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Abstract

This paper revisits the problem of power analysis and sample size calculations in randomized

experiments, with a focus on settings where inference on average treatment effects is conducted

using randomization tests. While standard formulas based on the two-sample t-test are widely used

in practice, we show that these calculations may yield misleading results when directly applied to

randomization-based inference—unless certain assumptions are met.

We demonstrate that differences in potential outcome variances or unequal group sizes can

distort the behavior of the randomization test, leading to incorrect power and flawed sample size

calculations. However, a simple adjustment—studentizing the test statistic—restores the validity

of the randomization test in large samples. This adjustment allows researchers to safely apply

standard power and sample size formulas, even when using randomization inference.

We extend these results to a range of experimental designs commonly used in applied economics,

including stratified randomization, matched pairs, and cluster-randomized trials. Throughout, we

provide practical guidance to help researchers ensure that their design-stage calculations remain

valid under the inferential methods they plan to use.
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1 Introduction

Power analysis and sample size calculations are essential components of the design of randomized

controlled trials (RCTs). These calculations help ensure that a study is capable of detecting meaningful

treatment effects with high probability, if such effects exist. In applied economics and related fields, it

is common practice to base these calculations on standard formulas derived assuming some canonical

version of the model, usually under normality (e.g. Lachin, 1981).

Although this approach is widely used, it is less clear whether these formulas are applicable when

inference is conducted via randomization tests. In particular, practitioners may follow conventional

power formulas while planning to use randomization inference, presuming the two approaches are

interchangeable. This paper shows that they are not—at least not without additional care.

This paper aims to address the challenges of power analysis and sample size calculations in ran-

domized experiments, where the goal is to make inference on the average treatment effect (ATE) using

randomization tests. In this context, the randomization test constructs a reference distribution by

shuffling the labels of the experimental units and then recalculating the difference-in-means across

permutations of the data. Then, we use the quantiles of the reference distribution—the so-called

randomization distribution—to perform statistical inference and power analysis.

Randomization tests have gained popularity in economics, in part because they provide exact

control of the Type I error rate for any test statistic whenever experimental units are exchangeable

under the null hypothesis (e.g., Lehmann and Romano, 2022, Chapter 17). For instance, Chung and

Romano (2016) and Young (2019) document their widespread use in experimental economics; see also

Ritzwoller, Romano, and Shaikh (2025) for a review.

Despite their popularity, a major obstacle for power analyses and sample size calculations for

randomization-based inference is that the reference distribution itself—and thus its quantiles—is ran-

dom. Due to its stochastic nature, the exact behavior of the randomization distribution and its

quantiles might be intractable in practice, so we resort to approximations as the sample—drawn from

a hypothetical superpopulation—grows large. While the superpopulation paradigm may appear re-

strictive at first glance, this is also the common approach when analyzing the power function of the

two-sample t-test without imposing a parametric model (e.g. Van der Vaart, 2000).1

1One could also study the power of the randomization tests from a non-asymptotic perspective, e.g., Albert (2019),
Kim, Balakrishnan, and Wasserman (2022). These developments, however, are expressed in terms of constant factors
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The first result in this paper argues that when inference is conducted via a randomization test—

rather than the usual two-sample t-test—, traditional power formulas may no longer hold, even asymp-

totically. In such cases, reliance on standard calculations derived for the two-sample t-test can lead to

incorrect conclusions unless we impose additional assumptions, namely equality of variances between

experimental groups, or that the experimental groups are of the same size.

This paper provides a systematic examination of these issues. Beginning with the analysis of

completely randomized experiments under the potential outcomes framework, we illustrate where and

how standard approaches to power analysis break down when applied in the context of randomization

inference. This discrepancy arises because the randomization distribution based on the difference-in-

means statistic does not mimic the sampling distribution under the null hypothesis. The resulting

mismatch can lead to tests that fail to control size and exhibit distorted power, which in turn casts

doubt on sample size calculations and the interpretation of minimum detectable effects.

We recommend a simple remedy: to studentize the test statistic by an appropriate estimate of the

(asymptotic) variance. We show that after proper studentization, the randomization distribution of

the modified statistic asymptotically aligns with the sampling distribution of the studentized statistic

under the null. As a result, standard formulas for power and sample size can then be used safely, even

in conjunction with randomization tests.

These insights extend beyond completely randomized designs. We show that similar concerns—

and solutions—apply under covariate adaptive-randomization, matched pairs, and cluster-randomized

experiments. In each case, we examine the asymptotic behavior of both the test statistic and its

randomization distribution, showing how appropriate studentization restores the validity of power

analyses.

Randomization tests are often conceived and motivated from a finite-sample perspective, where

the random assignment is the “reasoned basis for inference” (e.g., Fisher, 1935). Thus, we discuss

the distinction between superpopulation and finite-population frameworks, and their implications

for power analysis using randomization inference. Finally, we highlight extensions to other target

parameters and designs where theory remains underdeveloped, offering guidance for applied researchers

interested in randomization-based inference.
that are often difficult to pinpoint without more assumptions, thus limiting their applicability for sample size calculations.
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1.1 Overview of the Methods

In this paper, we briefly outline the main formulas and methods used to conduct power analyses

based on randomization inference. As we argue, analyzing the statistical power of randomization

tests in finite samples is inherently challenging. Accordingly, the formulas we present are based on

large-sample approximations of the true power functions.

We distinguish between two types of analyses: ex ante and ex post. An ex ante analysis takes

place at the design stage, prior to the implementation of the experiment and the collection of data.

In this setting, the desired power level is typically specified by the researcher, and the objective is to

determine the sample size needed to achieve that level of power.

By contrast, an ex post analysis is conducted after data collection—once the experiment has been

implemented and the sample is fixed. The aim in this case is to assess the power of the different

inference procedures. For instance, quantifying the power of the two-sample t-test and the random-

ization test based on the sample mean difference. While ex post analyses occur at the analysis stage,

we emphasize that the researcher must specify such comparisons beforehand to avoid concerns about

selective inference.

The methods we cover in this paper are useful for both ex ante and ex post analyses. As we

will see, the formulas we present depend on user-chosen constants—such as the desired power, size

of the test, or the effect we seek to detect—as well as unknown parameters, such as the variances of

experimental groups, that must often be estimated using pilot or historical data.

NOTATION Throughout the paper, we maintain the following conventions. For a generic random

variable indexed by i, Wi, W (N) stands for (W1, . . . , WN) and W̄ is the sample average
∑N

i=1 Wi/N .

The asymptotic results are understood as N → ∞, unless otherwise specified. The indicator function

is denoted 1{·}. The expectation and variance are denoted E[·] and V[·], respectively.

2 Power Analysis in Completely Randomized Experiments

This section establishes the standard power analysis for a completely randomized experiment using a

two-sample t-test. Our goal is to understand how the power of the test behaves in large samples and

how it informs sample size decisions. For simplicity, we introduce the main ideas without covariates.

We postpone the discussion on stratified randomization to Section 5.
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2.1 Setup

Following the causal inference literature, we adopt the potential outcomes framework without inter-

ference. For each unit i = 1, . . . , N , denote by Yi(1) the potential outcome under treatment, by Yi(0)

the potential outcome under control, and by Di the binary treatment status of the ith unit, where

Di = 1 indicates unit i receives treatment, Di = 0 otherwise. For each unit, the observed data is

Wi = (Yi, Di), where the outcome Yi obeys the relationship

Yi = Yi(1)Di + Yi(1 − Di) ,

so that Yi(1) = Yi among the treated, and Yi(0) = Yi among the non-treated. Suppose that treat-

ment status is randomly assigned so that the treatment is statistically independent of each potential

outcome, denoted as (Y N(1), Y N(0)) ⊥ D(N). In this section, we consider what is known as com-

plete randomization. In simple terms, complete randomization states that 0 < m < N units receive

treatment, and the remaining n = N − m units receive no treatment. Formally, D(N) is uniformly

distributed over vectors d(N) = (d1, . . . , dN) in which each di ∈ {0, 1} and
∑N

i=1 di = m for some known

0 < m < N .

Throughout this paper the target parameter is the ATE, defined as ∆ = E[Yi(1) − Yi(0)]. Notice

that under random assignment, the ATE is identified by the mean difference between experimental

groups:

∆ = E[Y |D = 1] − E[Y |D = 0]

so that we can learn it from our data.

2.2 Statistical Inference

Our goal is to make inference about the ATE. Suppose we seek to test

H0 : E[Yi(1) − Yi(0)] = 0 vs. H1 : E[Yi(1) − Yi(0)] > 0 (1)

at level α ∈ (0, 1) based on random sample W (N) = {(Yi, Di) : i = 1 . . . , N} obtained from an

RCT under complete randomization. To test (1), consider a test statistic TN such that “large” values

provide evidence against the null hypothesis. Typically, such a test statistic is based on the sample-
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mean difference. Let TN := TN(W (N)) be given by

TN =
√

m

( 1
m

N∑
i=1

YiDi − 1
n

N∑
i=1

Yi(1 − Di)
)

. (2)

Under mild regularity conditions, we can approximate the sampling distribution of (2) under the

null hypothesis. Specifically, we can show that under the null hypothesis, the distribution of TN is

approximately N (0, σ2) as the sample size grows large, where

σ2 = V[Y (1)] + λV[Y (0)] ,

and λ = lim(m/n) as min{m, n} → ∞, for some λ > 0. To gain further intuition on λ, let us consider

the proportion of units that receive treatment, m/N . Observe that m/N = (1 + n/m)−1, so as the

sample size increases, m/N approaches λ/(1 + λ). Thus, we can think of λ/(1 + λ), loosely speaking,

as the unconditional probability of being treated.

The previous approximation gives rise to the two-sample t-test

ϕt-test
N

(
W (N)

)
= 1{TN > σz1−α} , (3)

where z1−α denotes the 1 − α quantile of a standard normal random variable. A few remarks are

in order. First, we note that (3) is an asymptotic test in the sense that it is based on the normal

approximation to the sampling distribution of TN under the null hypothesis. Thus, we can perform

inference without making parametric assumptions about the distribution governing the data. Secondly,

ϕt-test
N is (asymptotically) level α: the two-sample t-test controls the probability of a type-I error in

large samples. Lastly, it can be shown that the two-sample t-test has power tending to one as the

sample size increases, i.e., it is a consistent test against any fixed alternative H1 : ∆ > 0.

Remark 1. (Two-sided alternatives). We focus on so-called one-sided alternatives as in (1) because

it simplifies sample size calculations as opposed to, say, two-sided alternatives,

H0 : E[Yi(1) − Yi(0)] = 0 vs. H1 : E[Yi(1) − Yi(0)] ̸= 0 . (4)

However, we can deduce the power of a α-level test for (4) by that of a α/2-level one-sided test; see

Remark 3 for more details. ■
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2.3 Local Asymptotic Power Analysis

Because the power function of a consistent test converges to one under fixed alternatives H1 : ∆ > 0,

we follow the standard approach in asymptotic analysis by considering local alternatives that shrink

to H0 with the sample size. This gives us a non-trivial and interpretable approximation to power.

Specifically, we instead consider sequences of alternative hypotheses ∆N approaching ∆ = 0 of the

form ∆N = h/
√

N , for some constant h > 0. Under this paradigm, we can show that the so-called

local asymptotic power function of the two-sample t-test with local parameter h is given by

1 − Φ

z1−α −

√
λ

1 + λ
· h

σ

 , (5)

where Φ(·) is the cumulative distribution function (CDF) of a standard normal. To ease exposition,

define a rescaled version of σ2, denoted σ̃2, by

σ̃2 = 1 + λ

λ
· σ2 = 1 + λ

λ
· V[Y (1)] + (1 + λ) · V[Y (0)] .

Then, we can rewrite the above power function, Eq. (5), as

1 − Φ
(

z1−α − h

σ̃

)
. (6)

In practice, we are only interested in the power function at a single ∆, not a sequence of alternatives

∆N. To circumvent this, we usually fix N and a ∆ and solve for the local parameter h =
√

N ∆.

Then, by plugging such a value in (6) we can approximate the power of the two-sample t-test at ∆

of a completely randomized experiment. The following expression captures the approximate power

under a local alternative

1 − Φ
(

z1−α −
√

N ∆
σ̃

)
. (7)

Equation (7) reveals how power increases with the sample size N , the effect size ∆, and decreases with

potential outcome variances V[Y (1)] and V[Y (0)]. In other words, detecting smaller effects requires

larger samples or less noisy potential outcomes.

Operationally, the unknown variances V[Y (1)] and V[Y (0)] are replaced by their corresponding
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estimators. For instance, V[Y (1)] and V[Y (0)] could be estimated, respectively, by

1
m

N∑
i=1

Di(Yi − Ȳ1)2 and 1
n

N∑
i=1

(1 − Di)(Yi − Ȳ0)2 , (8)

where Ȳ1 and Ȳ0 represent the corresponding sample means of the treatment and control group.

Therefore, in practice, all the unknown quantities are either set by the researcher ex ante or estimated

ex post, so the power function (7) can be computed.

Remark 2. (Minimum Detectable Effect) As a byproduct of (7), we may also obtain an expression for

the smallest ATE, ∆, that can be detected with pre-determined power, say 1 − β for some β ∈ (0, 1),

at significance level α ∈ (0, 1):

∆ = (z1−α + z1−β) σ̃√
N

.

This is often referred to as the minimum detectable effect (MDE) in the literature. ■

Remark 3. (Two-sided alternatives, continued). Recall that TN is approximately normally distributed

in large samples. Then, symmetry of the normal distribution allows us to write the (local asymptotic)

power of the two-sided test that rejects when |TN| > σz1−α/2 as

1 − Φ
(

z1−α/2 − ∆
σ̃

)
+ Φ

(
zα/2 − ∆

σ̃

)
.

■

Remark 4. Conventional power analyses recommend that the sizes of the treated and control groups

should be proportional to their respective variances (Neyman, 1992). To see why, recall that λ ≈ m/n.

Thus, minimizing σ̃2 with respect to λ gives the optimal choice, say λ∗:

λ∗ =
√

V[Y (1)]
V[Y (0)] . (9)

Then, it follows from (6) that the power is negatively affected whenever λ deviates from (9). ■

2.4 Sample Size Calculations

One of the key challenges in planning (ex ante) an RCT is to determine the sample size N required

to tackle the testing problem (1) at level α ∈ (0, 1) and desired power, say 1 − β for some β ∈ (0, 1)
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(Lachin, 1981). Building on the power analysis from previous section, e.g., Eq. (7), we now establish

the relationship between the sample size N and a pre-determined power 1−β for some β ∈ (0, 1) when

we use the two-sample t-test to conduct inference for the ATE in a completely randomized experiment.

Specifically, we find the unique integer N that solves the equation (7). This gives us the required

sample size to achieve a given power

N = (z1−α + z1−β)2 σ̃2

∆2 , (10)

where the only unknown is N after α, β, and λ are chosen by the researcher, and V[Y (1)] and V[Y (0)]

are replaced by their corresponding estimators, say (8). Observe that the sample size in the previous

display is (a) increasing in power (1 − β), (b) decreasing in the ATE (∆), and (c) increasing in the

potential outcome variances V[Y (1)] and V[Y (0)].

At first glance, the preceding calculations based on Eq. (10) may appear counterintuitive. The

reason is twofold. First, it assumes that the variances V[Y (1)] and V[Y (0)] are known or can be

readily estimated. However, sample size calculations are typically conducted ex ante, that is, prior to

data collection and analysis. As a result, we must rely on auxiliary sources of information—such as

historical data from the same or a comparable population, or preliminary results from a pilot study;

see Glennerster and Takavarasha (2013, Chp. 6) or Duflo, Glennerster, and Kremer (2007, Sec. 4.6).

Second, the formulas derived in the preceding sections are based on asymptotic approximations as

the sample size tends to infinity, which complicates the task of determining a finite total sample size

N . However, these approximations are used not because we suppose we have an infinite amount of

data, but because they become, roughly speaking, more precise as the sample size increases. Therefore,

in a large-sample environment like ours, it is more appropriate to think of sample size calculations

as answering a question of the form: what is the sample size N such that a test for (1) based on the

normal approximation gives us, say, (1 − β) × 100% power at α × 100% significance level?

While the formulas in this section are widely used in practice, it is less clear whether they are

applicable when inference is conducted using randomization tests. In the next section, we examine

when we can safely apply these formulas in conjunction with randomization tests.
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3 Randomization Test for the ATE under Complete Randomization

In this section, we shift the focus to randomization inference. Randomization inference has several key

advantages. First, it is a nonparametric testing procedure, so we do not need to assume a parametric

model for the data, such as normality. Second, while it is often motivated due to its finite-sample

guarantees, randomization inference also offers a way to carry on robust inference in general settings

when the sample size grows large. Lastly, in many interesting problems like the ones we consider here,

the randomization test is as powerful as the test based on the normal approximation.

We begin with the basic construction under complete randomization. For the sake of exposition,

we begin by casting our testing problem (1) as a two-sample testing problem of equality of means. To

this end, we note that Yi(1) = Yi among the treated, and Yi(0) = Yi among the non-treated. Thus,

we may think of the m potential outcomes under treatment (Y1(1), . . . , Ym(1)) as a random sample

from the distribution of Y (1) with CDF F1(·), so that we are implicitly assuming that we are sam-

pling from a hypothetical superpopulation; see Section 6.1 below for further discussion. Analogously,

(Y1(0), . . . , Yn(1)) is a random sample from the distribution of Y (0) with CDF F0(·). Notice that the

two samples are independent by virtue of random assignment. Then, (1) reduces to testing

H0 : EF1 [Y (1)] = EF0 [Y (0)] vs. H1 : EF1 [Y (1)] > EF0 [Y (0)] .

For the most part, our discussion and theoretical results in this section follow the exposition in Chapter

17 in Lehmann and Romano (2022). Ritzwoller, Romano, and Shaikh (2025) provide an excellent

review of randomization tests and more recent developments. We do not include the proofs and instead

focus on the intuition behind the main results. We also recommend the interested reader to consult

Chung and Romano (2013) for a more in-depth exposition. Implementation of the randomization tests

in this Section can be done using the R package RATest, available on CRAN.

3.1 Construction of a Randomization Test

Intuitively, the randomization test seeks to test (1) by constructing an auxiliary resampling distribution

that approximates the sampling distribution of the test statistic TN, so that we can use the quantiles of

the auxiliary distribution as data-driven critical values. In our context, this resampling scheme is done

by permuting the labels of the observations in both experimental groups, and then recomputing TN
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for each reshuffling of the data. Under some conditions, this auxiliary resampling distribution serves

as a reference from which we obtain critical values to make valid inference and power calculations, at

least in large samples.

We formalize the ongoing discussion. We begin by combining the data from the two samples as

Z(N) = (Z1, . . . , ZN) = (Y1(1), . . . , Ym(1), Y1(0), . . . , Yn(0)) .

Let π = (π(1), . . . , π(N)) be a permutation of indices {1, . . . , N}, and GN denote the collection

of all N ! permutations π of indices {1, . . . , N}. For any π ∈ GN, denote the permuted data as

Z
(N)
π = (Zπ(1), . . . , Zπ(N)), and the permuted test statistic by

T π
N := TN

(
Z(N)

π

)
=

√
m

 1
m

m∑
i=1

Zπ(i) − 1
n

n∑
j=1

Zπ(m+j)

 .

The next steps illustrate the construction of a randomization test for (1) at fixed nominal level α:

Step 1 Given Z(N) = z(N), recalculate the test statistic for all permuted samples. This process yields

N ! recomputed test statistics as π varies in GN. Collect them into {T π
N : π ∈ GN}.

Step 2 Order the {T π
N : π ∈ GN} values obtained in Step 1 from smallest to largest, say

T
(1)
N (z(N)) ≤ T

(2)
N (z(N)) ≤ · · · ≤ T

(N !)
N (z(N)) .

Step 3 Let k = N ! − ⌊αN !⌋, where ⌊αN !⌋ is the largest integer less than or equal to αN !. Locate the

corresponding k-th value among the ordered statistics:

T
(1)
N (z(N)) ≤ · · · ≤ T

(k)
N (z(N)) ≤ · · · ≤ T

(N !)
N (z(N)) ,

and from it, define

N+(z(N)) = the number of T
(j)
N (z(N)) that are greater than T

(k)
N (z(N)) ,

N0(z(N)) = the number of T
(j)
N (z(N)) that are equal to T

(k)
N (z(N)) ,

a(z(N)) = αN ! − N+(z(N))
N0(z(N))

.
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Step 4 The randomization test is given by

ϕrand
N (Z(N)) = 1{TN > T

(k)
N } + a(Z(N))1{TN = T

(k)
N } . (11)

Notice that T
(k)
N —the kth-largest test statistic among the {T j

N : j = 1, . . . , N !}—acts as a critical

value using the quantiles of an auxiliary sampling distribution, namely the empirical distribution of

the re-computed test statistics. More specifically, let

R̂T
N (t) = 1

N !
∑

π∈GN

1 {T π
N ≤ t} . (12)

Then T
(k)
N is the upper-α quantile of (12), denoted r̂N(1 − α) and given by

r̂N(1 − α) = inf{t : R̂T
N (t) ≥ 1 − α} . (13)

Eq. (12) is the so-called randomization distribution of TN, and r̂N(1−α) is the data-driven critical value

using the quantiles of the randomization distribution (12). From here, we see that the randomization

test (11) rejects H0 if the test statistic is bigger than r̂N(1 − α), fails to reject if TN < r̂N(1 − α),

and otherwise randomizes the decision with success probability a(Z(N)) whenever TN = r̂N(1 − α), a

situation that may arise due to possible ties when permuting the data.

Remark 5. In most cases of empirical relevance, the sample size N is such that it is computationally

prohibitive to re-calculate the test statistic for all N ! permutations of indices {1, . . . , N}. For this

reason, in practice, we resort to a stochastic approximation: rather than considering all permutations,

set π1 =identity permutation, and draw π2, . . . , πB permutations uniformly at random from GN. For

example, randomly permute the data 999 times and recalculate the test statistics each time, i.e.,

B = 1000 times in total, as we also calculate the test statistic using the original data (corresponding

to π1). Indeed, R̂T
N (t) can be approximated to any desired degree of accuracy when B is large without

compromising the statistical properties of the randomization test (e.g. Lehmann and Romano, 2022,

Chp. 17). Thus, for the rest of this paper, we write things in terms of the N ! permutations, though

it is understood we calculate R̂T
N (t) and its critical values based on π1, . . . , πB permutations (e.g.,

B=1000). See Ramdas et al. (2023) for alternative approaches based on subsets of GN. ■

Remark 6. (Finite-Sample Exactness). When the so-called “randomization hypothesis” holds (e.g.,
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Lehmann and Romano, 2022, Def. 17.2.1), the randomization test yields an exact level α test for a

fixed sample size. For instance, suppose that instead of (1), we were interested in testing the null

hypothesis of “no treatment effect” H0 : Y (1) d= Y (0), where d= denotes equality of distribution. In this

particular situation, the randomization test attains exact finite-sample Type I error control. While

this finite-sample exactness is certainly appealing, the null hypothesis H0 : Y (1) d= Y (0) is stronger

than the actual hypothesis of interest (1). That is, equality in distribution implies equality of means,

but not the other way around; see Chung (2017) for further discussion. ■

3.2 Asymptotic Behavior of the Randomization Distribution

The key challenge to understanding the asymptotic properties of the randomization test is that the

decision to reject a null hypothesis depends on r̂N(1 − α), which is a random variable. Consider the

power analysis of the previous sections. To show that a test has high power asymptotically, we typically

need to show that the distribution of the test statistic is far from its critical value—for instance, 1.96—

under the alternative hypothesis as the sample size increases. For the randomization test, this critical

value is not a fixed number but rather a random quantity.

Despite these challenges, we can show that when the sample size grows large, the randomization

distribution settles down to some nonrandom distribution, in probability (e.g., Chung and Romano,

2013, Theorem 2.1). Indeed, in our setting, we have that the randomization distribution of TN behaves

like the distribution of a normal random variable with mean zero and variance τ2 given by

τ2 = λV[Y (1)] + V[Y (0)] ,

and the random r̂N(1 − α) converges in probability to τ z1−α, that is, the (random) quantile of the

randomization distribution concentrates around the (1 − α) quantile of the normal distribution with

mean zero and variance τ2, in probability.

However, this is not the asymptotic behavior of the test statistic TN under H0, in general. To see

why, recall that we concluded in Section 2.2 that the sampling distribution of TN behaves, under the

null hypothesis, like the distribution of a normally distributed random variable with mean zero and

variance

σ2 = V[Y (1)] + λV[Y (0)] ,
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giving rise to the two-sample t-test that rejects H0 if TN > σz1−α. Therefore, unless V[Y (1)] = V[Y (0)]

or m/n → 1 (equally-sized experimental groups), σ2 ̸= τ2. Then, the two distributions—and respective

critical values—will not be the same, even asymptotically.

Figure 1 illustrates a scenario in which the randomization test yields conservative inference. It

compares the large-sample behavior of the randomization distribution of TN (yellow curve) with the

corresponding sampling distribution of TN under the null hypothesis (in blue) for suitable choices of

τ2 and σ2. The vertical line marks r̂N(0.95), the 95th percentile of R̂T
N . As shown, using this threshold

leads to a rejection probability under the null of 0.017—substantially below the nominal level α—

highlighting the test’s conservativeness in this setting. However, just as this particular configuration

results in underrejection, other parameter choices can lead to overrejection of the null, which is more

problematic. This lack of robustness implies that randomization-based inference is not reliable, even

asymptotically.

Figure 1: Asymptotic behavior of the randomization distribution of TN (yellow) and the true uncondi-
tional distribution of TN under the null (blue), where TN is given by (2). The vertical line corresponds
to r̂N(0.95), the 95th percentile of the randomization distribution of TN.

3.3 Implication for Power Analysis in Completely Randomized Experiments

Unfortunately, traditional power analysis and sample size calculations may also be compromised if we

blindly follow the calculations designed for the two-sample t-test but wish to perform randomization

inference. As we argued in Section 3.2, this is so because the randomization distribution of TN does

not accurately approximate the true sampling distribution of the test statistic, leading to potentially

misleading conclusions. That is, distorted conclusions about significance and potentially underpowered
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designs ensue if standard formulas are used.

To understand the detrimental effects on power analysis, we follow Section 2 and derive the (local

asymptotic) power of the randomization test based on TN in a completely randomized experiment. As

before, consider sequences of alternatives of the form ∆N = h/
√

N approaching ∆ = 0 as N → ∞.

We can show (e.g., Lehmann and Romano, 2022, Chapter 17.2.2) that the (local asymptotic) power

function of the randomization test based on TN in a completely randomized experiment is given by

1 − Φ

 τ

σ
z1−α −

√
λ

1 + λ
· h

σ

 . (14)

Arguing as in Section 2.3, we approximate the power of the randomization test at ∆ by

1 − Φ

 τ

σ
z1−α −

√
λ

1 + λ
·

√
N∆
σ

 = 1 − Φ
(

τ

σ
z1−α −

√
N∆
σ̃

)
. (15)

Observe that unless σ2 = τ2, the power functions in (14) and (15) will not coincide with those of

the two-sample t-test, eqs. (5) and (7), respectively. In general, σ2 ̸= τ2. However, there are two

situations in which the power functions coincide. First, when the variances of the potential outcomes

are the same across experimental groups, i.e., V[Y (1)] = V[Y (0)]. The second instance is when the

experimental groups are of the same size, i.e., when m/N converges to 1/2 as the sample size grows

large, so that λ = 1. Though the latter condition is under the researcher’s control, it is harder to

claim V[Y (1)] = V[Y (0)] without further assumptions; see Remark 7 below.

To illustrate the practical relevance of the ongoing discussion, suppose that λ > 1 and V[Y (1)] >

V[Y (0)] so that τ2 > σ2. A direct comparison of the (local asymptotic) power functions of the

two-sample t-test and randomization test based on TN at ∆ > 0 yields

1 − Φ
(

τ

σ
z1−α −

√
N∆
σ̃

)
︸ ︷︷ ︸

randomization test

< 1 − Φ
(

z1−α −
√

N∆
σ̃

)
︸ ︷︷ ︸

two-sample t-test

.

That is, for given sample size N , ∆ > 0, and α ∈ (0, 1), the randomization test exhibits a lower power

relative to the two-sample t-test based on the asymptotic approximation. The detrimental effects of

ignoring this phenomenon are immediate. First, the two-sample t-test will detect smaller deviations

from the null hypothesis at a pre-specified power, say 1 − β, than the randomization test based on TN,
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since

MDEt-test = σ̃√
N

(z1−α + z1−β) <
σ̃√
N

(
τ

σ
z1−α + z1−β

)
= MDErand

Second, sample size calculations in a completely randomized experiment are distorted too:

(z1−α + z1−β)2 σ̃2

∆2︸ ︷︷ ︸
N : two-sample t-test

<

(
τ

σ
z1−α + z1−β

)2 σ̃2

∆2︸ ︷︷ ︸
N : randomization test

.

Therefore, naively using the formula for the two-sample t-test when inference is to be carried out

by a randomization test based on TN delivers incorrect sample size estimates. The effect of such a

miscalculation will depend on the variances of the potential outcomes, the proportion of treated units,

and the effect we seek to detect. For instance, suppose that λ = 1/2, V[Y (1)] = 0.7, V[Y (0)] = 1.1,

and ∆ = 0.5. Then, at conventional values α = 0.05 and 1 − β = 0.8, eq. (10) dictates a sample size

N = 93. Meanwhile, the sample size using the appropriate formula would be N = 103, approximately

a 10% increase relative to the naive formula designed for the two-sample t-test.

Remark 7. (Heterogeneous Treatment Effects) Although it is generally difficult to justify the as-

sumption V[Y (1)] = V[Y (0)] without additional structure, one setting where this equality holds is

under the absence of treatment effect heterogeneity. Formally, we say the treatment effect is ho-

mogeneous if Yi(1) − Yi(0) = δ for some (unknown) constant δ; otherwise, the treatment effect is

heterogeneous, meaning it varies across individuals. Under treatment effect homogeneity, it follows

that F1(y + δ) = F0(y), i.e., the CDF of treatment and control groups differ only by a constant shift

δ, where δ coincides with the ATE. In this case, the treatment affects only the location of the dis-

tributions of Y (1) and Y (0)—not their shape—, implying V[Y (1)] = V[Y (0)]. While the constant

treatment effect assumption is inherently untestable—we never observe Yi(1) and Yi(0) for the same

individual—it is possible to test the implication F1(y + δ) = F0(y); see for example Ding, Feller, and

Miratrix (2016) or Chung and Olivares (2021). ■

Remark 8. It is often the case in randomized experiments with binary treatments to set P(Di =

1) = 1/2 so as to ensure treatment and control groups are of the same size. In this case, we would

have in the limit that λ = 1 and so τ2 = σ2. Thus, the power analysis based on the formulas for the

two-sample t-test is applicable for randomization tests, though perhaps inadvertently by practitioners.

Nevertheless, it is not unusual to find situations where the proportion of treated units differs from

1/2, e.g. Karlan and List (2007), Bloom et al. (2013), Banerjee et al. (2015), Bloom et al. (2020). ■

16



4 Solutions in Completely Randomized Experiments

The reason why traditional power analysis breaks when making inference for the ATE in a completely

randomized experiment is straightforward: the randomization distribution and the sampling distribu-

tion of the test statistic under H0 do not agree due to the mismatch in variances. This suggests a

solution. Since σ2 and τ2 do not agree unless we impose additional restrictions, we could studentize

the test statistic TN to ensure that its asymptotic variance does not depend on the variances of the

potential outcomes or the proportion of treated units at all. It turns out, when this studentization is

done properly, the randomization distribution of the studentized test statistic settles around the true

unconditional distribution of the test statistic. This way, we can restore valid inference and power

analysis, at least asymptotically.

To set the stage, consider the studentized test statistic, SN := SN(Z(N)), given by

SN = TN√
σ̂2

1 + m
n σ̂2

0

, (16)

where σ̂2
1 := σ̂2

1(Z1, . . . , Zm) and σ̂2
0 := σ̂2

0(Zm+1, . . . , ZN) are the sample variances

σ̂2
1 = 1

m

m∑
i=1

(
Zi − Z̄m

)2
and σ̂2

0 = 1
n

n∑
j=1

(
Zm+i − Z̄n

)2
,

and Z̄m and Z̄n are the sample means of treatment and control group, respectively. For completely

randomized experiments, we can show that SN converges in distribution under the null hypothesis (1)

to the distribution of a standard normal random variable. That is, its asymptotic distribution does

not depend on additional parameters, such as the variances or λ.

The previous asymptotic result gives rise to the studentized two-sample t-test based on the normal

approximation. Thus, in the same spirit as in ϕt-test
N in (3), the studentized two-sample t-test rejects H0

if SN > z1−α, and fails to reject otherwise. Indeed, we can view the studentized two-sample t-test as

the usual t-test on the slope parameter associated with the treatment indicator in a linear regression

of outcome Y on a constant and D, with heteroskedasticity-robust standard errors.

As before, we will define the randomization test using the quantiles of a reference distribution,

the so-called randomization distribution of SN, denoted R̂S
N(·). To this end, we proceed in the same

manner as in Section 3.1, except we now replace TN by SN, i.e., we re-calculate SN, say Sπ
N , for each
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permutation of labels π ∈ GN. However, unlike the randomization distribution of TN, we now must

re-calculate σ̂2
1 and σ̂2

1, besides TN, for each permutation of data. Therefore, for a fixed α ∈ (0, 1),

the randomization test based on SN rejects the null hypothesis if SN > r̂S,N(1 − α), fails to reject if

SN < r̂S,N(1 − α), and randomizes the decision when SN = r̂S,N(1 − α), where r̂S,N(1 − α) is the (1 − α)

quantile of the randomization distribution of SN, given by

R̂S
N(t) = 1

N !
∑

π∈GN

1 {Sπ
N ≤ t} . (17)

Importantly, we can then show that the randomization distribution of SN is uniformly asymptotically

equivalent to the distribution of a standard normal distribution (e.g., Chung and Romano, 2013,

Theorem 2.2). Therefore, the randomization test based on SN controls the probability of a type-I

error in large samples, even if the underlying variances of the potential outcomes are not the same—

possibly due to treatment effect heterogeneity—or the experimental groups’ sizes differ.

4.1 Power Analysis in Completely Randomized Experiments: Revisited

Since the randomization distribution of SN settles around the true unconditional distribution of the test

statistic SN regardless of whether the null hypothesis holds or not, we can study its power properties

along the same lines as in Section 2.3.

First, we observe that the (local asymptotic) power function of SN against alternative hypotheses

of the form ∆ = h/
√

N in fully randomized experiments is still given by (5) since σ̂2
1 and σ̂2

0 are

consistent estimators for V[Y (1)] and V[Y (0)], respectively.

Since the randomization distribution based on SN behaves like the distribution standard normal

random variable, we have that its upper-α quantile, r̂S,N(1−α), converges in probability to the upper-α

quantile of the standard normal distribution, z1−α. Therefore, we can show by a contiguity argument

(e.g., Lehmann and Romano, 2022, Chapter 17.2.2) that the (local asymptotic) power function of the

randomization test based on SN is given by (5), that is,

1 − Φ
(

z1−α − h

σ̃

)
.

Thus, there is no loss in power when using the data-driven critical values from the randomization

distribution of SN. By the same token as in Section 2.3, the power of the randomization test based on
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SN at ∆ > 0 is given, with high probability, by

1 − Φ
(

z1−α −
√

N∆
σ̃

)

as the sample size grows large. Importantly, sample size calculation formulas based on the studentized

two-sample t-test apply when one seeks to perform inference on the ATE using randomization inference

based on SN.

5 Broader Implications

One of the important lessons from previous Sections is that the randomization test may lead to

erroneous decisions and misleading power analyses. The reason is that the randomization distribution

does not always mimic the true unconditional distribution of the test statistic. When making inference

on the ATE, we show that this “mismatch” occurs because the randomization distribution of TN and

the sampling distribution of TN have different asymptotic variances in general.

In this section, we show that this phenomenon is not unique to completely randomized experiments.

In fact, a similar issue appears under covariate-adaptive randomization, matched-pair designs, and

experiments with cluster randomization. Thus, the same caveats as in completely randomized designs

are warranted—inference and power analyses based on randomization tests might lead to erroneous

conclusions.

This drawback is not insurmountable. Indeed, we will present modern developments in random-

ization inference that overcome these issues. The solution echoes Section 4: proper studentization of

the test statistic restores the validity of the randomization test. For the sake of concreteness, we omit

all the technical details, but encourage the readers to consult Bugni, Canay, and Shaikh (2018), Bai,

Romano, and Shaikh (2022), and Bugni et al. (2025) for an in-depth discussion on the theoretical

properties of inference methods under covariate-adaptive randomization, matched-pair designs, and

cluster randomized experiments, respectively.

As before, we focus on testing problems about the ATE. However, since the aforementioned

randomization schemes incorporate pre-determined characteristics to inform the treatment, we now

make the following assumption to ensure identification of the ATE. Denote Xi the vector of baseline

characteristics for individual i. We will assume that the joint distribution of the treatment status only
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depends on pre-determined characteristics:

(
Y (N)(1), Y (N)(0)

)
⊥ D(N) | X(N) .

In practice, researchers use predetermined covariates not only as features of the stratification rule

but also as controls to improve the precision of their estimates in stratified experiments. Although

adjusting for covariates can improve statistical power and estimation precision, our focus here is on

their role in the design stage—specifically, how they are used for stratification. This is because, as we

will argue, stratification may have unintended negative consequences for randomization inference.

5.1 Covariate-Adaptive Randomization

While complete randomization takes care of selection bias, it does not guard researchers against

imbalances over these baseline covariates after randomization. This situation may result in loss of

statistical efficiency or low estimation precision, even if these imbalances occur purely by chance

(Imbens and Rubin, 2015, Chp. 9).

In such circumstances, covariate-adaptive randomization (CAR) is a popular randomization tech-

nique that exploits observable characteristics to inform the treatment and achieve balance over baseline

covariates. In plain terms, CAR proceeds in two steps. First, it groups individuals into strata based

on the baseline covariate levels. Then, it treats individuals within each stratum using a randomization

technique to achieve balance. For instance, we could assign treatment in the second stage by using

complete, permuted-block, or biased-coin randomization; see Rosenberger and Lachin (2015).

Although CAR is widely used in practice (e.g., Bruhn and McKenzie, 2009), it has been established

that the two-sample t-test can be conservative under this design, with a limiting rejection probability

under the null hypothesis that falls below the nominal significance level (Bugni, Canay, and Shaikh,

2018). The source of the problem lies in the dependence among treatment assignments induced by

CAR—both across individuals and between treatment status and baseline covariates.

This conservativeness directly leads to a reduction in power when making inference on the ATE.

Consequently, standard power analyses and sample size calculations that ignore the impact of stratifi-

cation on the asymptotic distribution of TN may be misleading, for reasons analogous to those discussed

earlier.
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However, if we studentize TN correctly, we can show that the two-sample t-test based on the

adjusted TN leads to a valid test under CAR in large samples; see Bugni, Canay, and Shaikh (2018)

Eq. (24) and Theorem 4.2. Building on this result, it follows by standard arguments that the properly

studentized test statistic has limiting power given by (5). Therefore, we could carry on valid inference

for the ATE under CAR using the two-sample (adjusted) t-test based on the modified statistic proposed

by Bugni, Canay, and Shaikh (2018, Eq. (24)), and Eq. (7) for sample calculations.

Remark 9. (t-test with Strata Fixed Effects) It is also possible to construct an alternative test for

the ATE under CAR, namely, the usual t-test on the slope coefficient in a regression of Y on D and

strata fixed effects with heteroskedasticity-robust standard errors (Bruhn and McKenzie, 2009). As

with the two-sample t-test, the t-test with strata fixed effects is conservative in general, though proper

studentization yields an exact test in large samples (Bugni, Canay, and Shaikh, 2018). ■

5.1.1 Randomization Test under CAR

As previously discussed, the randomization test based on TN can lead to incorrect sample size calcula-

tions under complete randomization without additional assumptions. Since CAR introduces additional

dependencies across treatment assignments, there is little reason to expect improved sample size cal-

culations from randomization-based inference when applied in this setting using the same construction

as in Section 3.

One might hope that permuting treatment assignments within strata would preserve the depen-

dency structure induced by CAR, potentially enabling valid power analysis via randomization tests

based on TN. Indeed, such a test does control the type I error rate asymptotically, but only under

specific conditions: the allocation proportion must satisfy λ = 1, and the randomization scheme in

the second step of CAR must also achieve the so-called “strong balance” (see Bugni, Canay, and

Shaikh, 2018, Sec.2). While certain randomization mechanisms—such as permuted block random-

ization and Efron’s biased-coin design—satisfy this condition, it excludes commonly used schemes,

including simple randomization.

More generally, the randomization test will fail to control the probability of a Type I error—and

hence compromise sample size calculations—if λ ̸= 1 unless we impose stronger assumptions about

the variance and conditional expectations of potential outcomes. As before, a simple fix is possible:

calculate the randomization test that permutes treatment status within strata based on the modified
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test statistic proposed by Bugni, Canay, and Shaikh (2018, Eq. (24)). This test is asymptotically

valid for the ATE under CAR schemes with strong balance even if λ ̸= 1.

5.2 Matched Pairs

Another popular stratified randomization scheme in RCT is the matched-pairs design. As in CAR,

the idea is to form strata according to covariates Xi, and then assign treatment within each stratum

according to a certain treatment assignment mechanism. The key difference is that in matched-pair

designs, strata have exactly two units, and only one receives treatment with probability 1/2. Therefore,

assuming N is an even number, we will have that N = 2m, which in turn implies that the relative

group size is always equal to one.

As before, this form of stratified randomization has an effect on the asymptotic behavior of the

test statistic TN. Specifically, Bai, Romano, and Shaikh (2022) show that the sampling distribution

of the test statistic behaves, as the sample size increases, like the normal distribution with mean zero

and variance

σ2
m-pair := V[Y (1)] + V[Y (0)] − 1

2 E
[{

(E[Y (1)|X] − E[Y (1)]) + (E[Y (0)|X] − E[Y (0)])
}2]

Therefore, ignoring this effect may yield flawed power analysis and misleading sample size cal-

culations. Indeed, Bai, Romano, and Shaikh (2022) show that the two-sample t-test is generally

conservative. However, it is possible to studentize the test statistic and thereby obtain a modified

test statistic whose limit distribution does not depend on the way the pairs are formed. The main

challenge is that we seek to estimate the conditional variances of potential outcomes within pairs, but

only have one treated unit. Bai, Romano, and Shaikh (2022, Eq. (20)) develop a consistent estimator

for σ2
m-pair, say σ̂2

m-pair by utilizing adjacent pairs that are “similar” in terms of X.

5.2.1 Randomization Test under Matched-Pairs Design

To construct a randomization test under a matched-pairs design, we need to take into account that

treatment status is assigned at the pair level. Therefore, we adapt the construction presented in

Section 3 to reflect this feature and permute treatment assignment within pairs. That is, construct the

randomization distribution in match-pair designs by recalculating the test statistic for all permutations
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of treatment status within each pair.

Denote r̂m-pair,N(1 − α) the upper-α quantile of the randomization distribution based on TN/σ̂m-pair.

Consider the randomization test that rejects H0 if TN/σ̂m-pair > r̂m-pair,N(1 − α), fails to reject if

TN/σ̂m-pair < r̂m-pair,N(1 − α), and randomizes the decision otherwise.

As before, we seek to approximate the power function of the randomization test against a sequence

of alternatives that shrink to the null hypothesis as N grows large. In view of Bai, Romano, and

Shaikh (2022, Theorem 3,5) and a standard contiguity argument, we could show that, in RCTs under

a matched-pairs design, the randomization test based on the properly studentized test statistic has

(local) asymptotic power against alternatives of the form ∆N = h/
√

N

1 − Φ
(

z1−α − h√
2 · σm-pair

)
,

where the
√

2 factor comes from the fact that N = 2m in matched-pair designs by construction. Thus,

the power of the randomization test based on TN/σ̂m-pair at ∆ > 0 is given by

1 − Φ
(

z1−α −
√

N∆√
2 · σm-pair

)

as the sample size grows large, leading to sample size formulas that resemble those from previous

sections, albeit with the appropriate asymptotic variance.

Remark 10. Given the fact that N = 2m in matched-pair designs, we could have considered the

power of the randomization test against alternatives of the form h/
√

m. Observe that power analyses

are invariant to this choice since we rescaled the asymptotic variance. For instance, MDE formula

satisfies

∆ = (z1−α + z1−β)
√

2 · σm-pair√
N

= (z1−α + z1−β) σm-pair√
m

.

■

5.3 Cluster Randomized Experiments

In some cases, we might be interested in cluster randomized experiments (CRE)— experiments where

the treatment is assigned at the cluster level, not at the individual level. For instance, clusters could

be schools or villages, so if a school is treated, then all the members of said school receive treatment;
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see Section 8 in Athey and Imbens (2017) for a more detailed exposition.

Arguing as in Bugni et al. (2025), we can think of the sampling process in CREs as a two-stage

process, where we first draw a random sample of G clusters from a superpopulation of clusters—so the

clusters are random variables—, and then we sample a subset of individual units within each cluster.

Two remarks are in order. First, the size of each cluster, denoted Ng, g = 1, . . . , G, and the cluster

characteristics, Xg, are random variables themselves. Thus, the cluster sizes and characteristics are

heterogeneous once realized, even though they are drawn from the same distribution. Second, the

researcher might not sample all units within a cluster. We will denote the subset of sample units from

cluster g by Mg ⊂ {1, . . . , Ng}, and by |Mg| the number of elements in Mg for each g = 1, . . . , G.

We adapt the notation from previous sections to reflect the fact that this is a CRE. Let Yi,g(1)

denote the potential outcomes of individual i in cluster g if treated, and similarly Yi,g(0) as the

potential outcomes of individual i in cluster g if not treated. Once the observations in a cluster are

realized, the researcher assigns treatment at the cluster level. We assume that the entire cluster is

either treated or not treated. Denote by Dg the cluster g treatment indicator taking value 1 if cluster

g is treated, 0 otherwise. As is standard in the potential outcomes framework, observed and potential

outcomes are linked via Yi,g = Yi,g(1)Dg + Yi,g(0)(1 − Dg).

We discuss three different parameters of interest. First, consider the ATE where the clusters are

the units of interest. This parameter of interest is referred to as the equally-weighted cluster-level

average treatment effect, given by

θ1 := E

 1
Ng

Ng∑
i=1

(Yi,g(1) − Yi,g(0))

 . (18)

The second parameter of interest is the ATE where the individuals are the units of interest. This is

the so-called size-weighted cluster-level average treatment effect, given by

θ2 := E

 1
E[Ng]

Ng∑
i=1

(Yi,g(1) − Yi,g(0))

 . (19)

Lastly, we will consider the sample-weighted cluster-level average treatment effect,

θ3 := E

 1
E[|Mg|]

∑
i∈Mg

(Yi,g(1) − Yi,g(0))

 . (20)
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Remark 11. In general, θ1, θ2, and θ3 are different. However, they coincide in some special cases.

For instance, if all clusters are of the same size, say k, or the treatment effects are constant, then

θ1 = θ2. On the other hand, θ3 equals θ1 if we sample the same number of individuals across clusters

(P[|Mg| = k] = 1 for all g = 1, . . . , G). Lastly, θ3 equals θ2 if we sample the same fraction of units

across clusters, i.e., P[|Mg| = γNg] = 1 for some γ ∈ (0, 1], for all g = 1, . . . , G. ■

Following Bugni et al. (2025), we estimate (18)–(20) using an appropriate linear regression in

each case. Starting with (20), the estimator is simply the difference-in-means estimator, given by the

estimate of the slope parameter of a linear regression of Yi,g on the cluster treatment indicator Dg and

a constant. Similarly, we may estimate (19) with θ̂2, given by the estimate of the slope parameter in a

weighted linear regression of Yi,g on the cluster treatment indicator Dg and a constant, using weights

Ng/|Mg|. Lastly, consider (18). Since the θ1 is an ATE where the clusters are the units of interest,

we begin by aggregating sampled individuals by cluster as

Ȳg = 1
|Mg|

∑
i∈Mg

Yi,g .

Then, we estimate θ1 using θ̂1 given by the estimate of the slope parameter in the linear regression of

Ȳg on Dg and a constant.

5.3.1 Power Analysis for Randomization Tests in CRE

The inference theory for CRE with non-ignorable cluster sizes is being developed contemporaneously,

with current efforts primarily centered on tests based on asymptotic normal approximations. This

framework enables power analyses and sample size calculations for asymptotic tests in the same spirit

as in Section 2.3. In contrast, the theoretical foundations for randomization tests under non-ignorable

clustering remain less developed. In particular, we lack a general characterization of the asymptotic

behavior of the randomization distribution in this setting—at least one that would support power

analysis and sample size calculations with comparable scope and practical applicability.

For this reason, we focus in this section on a simplified setup where we can derive the asymptotic

properties of the randomization test and provide sample size calculations for applied researchers. In

this section, we will only consider CRE under complete randomization, where 1 ≤ m < G clusters

receive treatment, and n = G − m clusters receive no treatment. Therefore, we omit covariates and
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cluster characteristics for the sake of simplicity; see Bugni et al. (2025) for asymptotic inference based

on the normal approximation in CRE under CAR, and Bai et al. (2024) for matched-pair designs.

Under complete randomization, we can readily provide power analyses for randomization inference

for θ1. To see why, recall that θ1 can be seen as the ATE when the units of interest are the clusters

themselves. Thus, this case boils down to the two-sample problem discussed in Sections 2 and 3, where

the treated sample is now given by the collection of Ȳg for all treated clusters g, and the control group

is the corresponding Ȳg for all non-treated clusters g = 1, . . . , G. Similarly, the effective sample size is

now G as opposed to N , so the approximations are now conceived as G grows large.

Building on the lessons from Section 4, we want to establish the asymptptoc behavior of the

randomization distribution based on the studentized test statistics Scluster
N = TN/σ̂cluster, where TN is

given by the difference-in-means estimator

T cluster
N =

√
m

(∑G
g=1 ȲgDg∑G

g=1 Dg

−
∑G

g=1 Ȳg(1 − Dg)∑G
g=1(1 − Dg)

)
(21)

and σ̂cluster is a consistent estimator of the asymptotic variance of T cluster
N under complete randomization

(e.g., Theorem 3.4 of Bugni et al. (2025) and related discussion therein). Then, it follows by standard

arguments that the randomization distribution of the studentized statistic T cluster
N in (21) behaves

like a distribution of a standard normal random variable as the number of clusters G grows large

(e.g, by adapting the arguments in Lehmann and Romano (2022, Chapter 17.3)). Since also T cluster
N

converges in distribution to a standard normal random variable by Theorems 3.2 and 3.4 in Bugni

et al. (2025), it follows that the randomization distribution mimics the large sample behavior of the

sampling distribution of T cluster
N .

An immediate corollary of the ongoing discussion is that we can approximate the (local) asymptotic

power in completely randomized CREs when the goal is to make inferences on the equally weighted

cluster-level ATE. Specifically, the power of the randomization test based on T cluster
N against alternatives

of the form ∆G = h/
√

G is given by

1 − Φ

z1−α −

√
λ

1 + λ
· h

σcluster

 , where σ2
cluster = V[Ȳg(1)] + λ · V[Ȳg(0)] .

Thus, the power of the randomization test based on (21) at ∆ > 0, as the number of clusters increases,
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is approximated by

1 − Φ

z1−α −

√
λ

1 + λ
·

√
G∆

σcluster

 ,

so we obtain sample size formulas as in previous sections. Moreover, these formulas reveal that, since

the target parameter is θ1 so the units of interest are the clusters themselves, the sample size now refers

to the number of clusters (the sampled units within clusters are aggregated into Ȳg(d), d ∈ {0, 1}).

Building on the previous power analysis, we may also obtain sample size calculations for θ2 and θ3

under additional assumptions. For instance, suppose that the target parameter is θ3 instead. First, we

note that θ3 equals θ1 if we sample the same number of individuals across clusters. Moreover, under

the same assumption, we can show that θ̂3 reduces to θ̂1. Therefore, under this additional assumption

but otherwise under the same set of assumptions as before, the randomization-based power analysis

for θ1 carries over to θ3. See Remark 11 for more conditions under which θ1, θ2, and θ3 are equal.

6 Practical Recommendations for Applied Researchers

6.1 Sampling from a Finite- vs Superpopulation

We have performed power analyses under a paradigm that presumes our sample {(Yi(1), Yi(0), Xi) :

1 ≤ i ≤ N} is drawn independently and identically distributed according to some probability distri-

bution. In particular, when analyzing randomized experiments, we view the potential outcomes as

random variables. This perspective on sampling is often referred to as sampling from a hypothetical

infinite “superpopulation,” e.g., Van der Vaart (2000).

However, one could also adopt a sampling perspective that treats the data as a sample from a finite

population instead (Neyman, 1923, 1935). In this framework, we typically assume that the potential

outcomes are nonrandom, and the only source of randomness comes entirely from the treatment

assignment. While this paradigm is somewhat mainstream in statistics, it has also become popular

in econometrics, often referred to as “design-based” uncertainty, e.g., Abadie et al. (2020). See also

Imbens and Rubin (2015), Athey and Imbens (2017), and Ding (2024) for textbook expositions.

The distinction between these two approaches is not innocuous, and it may result in qualitatively

different analyses.2 In particular, this distinction is relevant for randomization inference. While a
2We could see the superpopulation paradigm as an approximation to the finite-population paradigm; see Ding, Li,

and Miratrix (2017) for more details.
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formal comparison between these two approaches is beyond the scope of this paper, let us focus on

one aspect that is relevant for power analyses and sample size calculations based on randomization

inference when the object of interest is the ATE.

We have seen that randomization-based power analyses rely on the fact that we may correctly

mimic the sampling behavior of the test statistic in large samples. Moreover, we showed that to

achieve this result, we relied on the proper studentization of the test statistic by an estimator of the

asymptotic variance. Specifically, for a suitable consistent estimator of the variance, we may ensure

that the limiting distribution of the test statistic does not depend on unknown parameters.

However, while it is possible to construct such a consistent estimator in a superpopulation paradigm,

we cannot always achieve the same in a finite-population paradigm (Bai, Shaikh, and Tabord-Meehan,

2025).3 The reason is that, from a finite-population perspective, the variance of the difference-in-

means estimator of the ATE (e.g., TN in Section 2.2) depends on the unit-level treatment effects,

Yi(1) − Yi(0), which are fundamentally unobservable for the same unit. This term—which does not

show in the super-population paradigm—renders randomization inference conservative (Wu and Ding,

2021), thus affecting sample calculations from a super-population perspective.

Given these concerns, we emphasize that applied researchers should be mindful of these differences,

both conceptually and mathematically. This is especially relevant for randomization inference, as

randomization tests are often conceived and motivated in the context of design-based uncertainty,

e.g., Fisher (1935). However, if we seek to use the sample size calculations based on the asymptotic

approximations in the previous sections, then it is important to clarify that we adhere to a framework

that supposes sampling from an infinite population. Whether this modeling decision is appropriate or

not depends on a given application; see Abadie et al. (2020) for more discussion.

6.2 Considerations for Different Designs or Target Parameters

In practice, we might care about different target parameters beyond the ATE. For instance, we

may consider quantile treatment effects or hypotheses about the entire distributions of the potential

outcomes. Indeed, it is possible to show that the randomization test has the same limiting power as

the asymptotic case against so-called “contiguous alternatives” in some of these scenarios, so there is

no loss in power when using the critical values from the randomization test when performing inference
3The large-sample asymptotic analysis from a finite-population perspective can be found in Li and Ding (2017); Wu

and Ding (2021). See also Example 12.2.2 in Lehmann and Romano (2022).
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and power analyses. This is the case, for instance, when testing for heterogeneity in the treatment

effect in completely randomized experiments (e.g., Chung and Olivares, 2021, 2025).

However, it might not be a trivial task to justify and generalize the asymptotic approach from

Sections 3 in more complex settings without further assumptions. For instance, it is difficult to analyze

the behavior of the randomization distribution and get analytically tractable power functions that

enable us to carry on sample calculations in high-dimensional settings, where the large-sample behavior

of the test statistic is non-normal; see Kim, Balakrishnan, and Wasserman (2022) and Dobriban (2022)

for more details.

Similarly, we might be interested in different randomization schemes beyond complete random-

ization, CAR, or matched-pairs designs. For instance, we could use rerandomization (Morgan and

Rubin, 2012) to achieve covariate balance. Though sample size calculations have been derived for the

two-sample t-test from a finite-sample perspective (Branson, Li, and Ding, 2024), the power of the

randomization test remains largely unknown to the best of our knowledge.

7 Concluding Remarks

This paper examines the challenges and remedies associated with power and sample size calculations

for randomization tests in experimental research when the goal is to make inference on the ATE.

There are two takeaway messages. First, we show that naive applications of classical formulas—

developed for the two-sample t-test—can yield misleading power analyses when used in conjunction

with randomization-based methods. In particular, when the limiting behavior of the test statistic

depends on unknown parameters under the null hypothesis, the randomization distribution may, in

general, fail to mirror the behavior of the sampling distribution, thereby distorting Type I error

control, power, and sample size calculations regardless of whether we are at the design stage (ex ante)

or analysis stage (ex post).

The second message is a positive one: to address the issues above, a simple solution is to properly

studentize the test statistic so that the modified statistic’s large-sample behavior is free of unknown

parameters. In doing so, we show that the randomization distribution of the newly modified statistic

behaves like the true sampling distribution of the test statistic, restoring the validity of classical power

analysis without sacrificing the nonparametric appeal of randomization inference.
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These insights hold not only in completely randomized designs but also extend to more complex

settings, including covariate-adaptive randomization, matched-pairs designs, and cluster-randomized

experiments—though more research is needed to cover recent developments that are largely underde-

veloped in the context of randomization inference. And while our focus has been on the ATE, similar

principles may apply to other target parameters—including quantile treatment effects—though the

solutions could be less automatic in some cases due to the high-dimensionality.

Future research could extend this framework to richer designs and target parameters where the

behavior of randomization distributions remains analytically elusive, such as in high-dimensional infer-

ence, nonlinear test statistics, or in designs involving rerandomization. Strengthening the connection

between design-based uncertainty and practical power analysis in these contexts remains an important

avenue for both theoretical and applied work.
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