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We organize this online appendix as follows. Section I includes the proofs of the

main theorems in the main text, i.e., Theorems 1 and 2. These theorems establish the

asymptotic behavior of the permutation test based on the 2SKSQ and the Khmaladze

transformed 2SKSQ, respectively. Section II contains the proofs of Lemmas 1 and 2.

These lemmas establish the asymptotic null behavior of the 2SKSQ and the Khmaladze

transformed 2SKSQ, respectively. In Section III, we provide numerical evidence in show-

ing that a test based on quantiles exhibits better size control in finite samples than one

based on CDF comparisons. In Section IV, we describe Bitler, Gelbach, and Hoynes’s

(2017, BGH ) simulated outcomes approach in more detail. We emphasize how their

approach is not immune to the Durbin problem and what is the source of the problem.

Even though their heuristic approach to the Durbin problem yields a correct conclusion

(inadequacy of the CSTE model), we argue the theoretical reasoning behind the simu-

lated outcomes approach does not formally address the problem and, therefore, we cannot

claim the asymptotic validity of their permutation test. Section V contains the results

of BGH’s empirical exercise. We include them here verbatim to highlight how their re-

sults are qualitatively the same as ours, despite the presence of an estimated nuisance

parameter. Lastly, we conclude this appendix with a brief explanation of how to calcu-

late the martingale-transformed statistic that we use in the construction of our proposed

permutation test in Section VI.
†The second author acknowledges support from the European Research Council (Starting Grant No.

852332). We are grateful to MDRC for granting access to the experimental data we use in this paper.
All errors are our own.
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I Proofs of Theorems

Throughout we adopt the following notation, not necessarily introduced in the main

text. If ξ is a random variable defined on a probability space (Ω,B, P ), it is assumed

that ξ1, . . . , ξN are coordinate projections on the product space (ΩN ,BN , PN), and the

expectations are computed for PN . If auxiliary variables—independent of the ξs—are

involved, we use a similar convention. In that case, the underlying probability space

is assumed to be of the form (ΩN ,BN , PN) × (Z,C , Q), with ξ1, . . . , ξN equal to the

coordinate projections on the first N coordinates and the additional variables depending

only on the N + 1st coordinate.

We view the empirical processes here as random maps into ℓ∞(T )—the space of all

bounded functions equipped with the uniform norm—and weak convergence is understood

as convergence in distribution in ℓ∞(T ). We assume that the class T is pointwise

measurable (Van der Vaart and Wellner, 1996, Example 2.3.4), ruling out measurability

problems with regards to suprema.

Independent of the Zs, let (π(1), . . . , π(N)) and (π′(1), . . . , π′(N)) be two independent

random permutations of {1, . . . , N}. Denote Zπ = (Zπ(1), . . . , Zπ(N)); Zπ′ is defined the

same way with π replaced by π′

I.1 Proof of Theorem 1

We seek to show the asymptotic behavior of RK
N (·), the permutation distribution based

on the 2SKSQ. Since υ̂N(τ ; Z) is a continuous mapping by the arguments in the proof of

Lemma 2, it suffices by the continuous mapping theorem (CMT) for randomization distri-

butions (Chung and Romano, 2016, Lemma A.6) to establishes the asymptotic behavior

of the permutation distribution based on υ̂N(τ ; Z).

We begin by recentering as in Remark 2 in the main text. Independent of the Z̃s,

let (π(1), . . . , π(N)) and (π′(1), . . . , π′(N)) be two independent random permutations of

{1, . . . , N}. Denote Z̃π = (Z̃π(1), . . . , Z̃π(N)); Z̃π′ is defined the same way with π replaced
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by π′. As we argued before, the two-sample quantile process in (6) and (8) in the main

text are numerically identical. Therefore, we will establish the asymptotic behavior of

the permutation distribution based on υ̂N(τ, Z̃).

By Lehmann and Romano (2022, Theorem 17.2.3), it suffices to that

{(
υ̂N(τ ; Z̃π), υ̂N(τ ; Z̃π′)

)
: τ ∈ T

}
(I.1)

converges weakly to a tight process
{(
υ(τ), υ′(τ)

)
: τ ∈ T

}
, where

(
υ(·), υ′(·)

)
are inde-

pendent Brownian bridges. Observe that assumption A.1 in the main text implies that

the inverse map is Hadamard-differentiable by Van der Vaart and Wellner (1996, Lemma

3.9.23) and that sup|φ̂(τ)| < ∞. Therefore, it follows by Chung and Olivares (2021,

Theorem 2) and the Delta-method that the process (I.1) converges weakly to a tight

process
{(
υ(τ), υ′(τ)

)
: τ ∈ T

}
, where

(
υ(·), υ′(·)

)
are independent Brownian bridges,

as desired. This finishes the proof.

I.2 Proof of Theorem 2

We seek to show the asymptotic behavior of RK̃
N , the permutation distribution based on

the two-sample martingale-transformed quantile process υ̃N(τ ; Z̃), where we have used

the numerical equivalence as we argued in the proof of Theorem 1. Since υ̃N(τ ; Z̃) is

a continuous mapping by the arguments in the proof of Lemma 2, then it suffices by

the continuous mapping theorem (CMT) for randomization distributions (Chung and

Romano, 2016, Lemma A.6) to establish the asymptotic behavior of the permutation

distribution based on υ̃N(τ ; Z̃), given by

υ̃N(τ ; Z̃) = υ̂N(τ ; Z̃) − ψg (υ̂N) (τ ; Z̃) .

Thus, it suffices to prove by Lehmann and Romano (2022, Theorem 17.2.3) that

{(
υ̂N(τ ; Z̃π) − ψg(υ̂N)(τ ; Z̃π), υ̂N(τ ; Z̃π′) − ψg(υ̂N)(τ ; Z̃π′)

)
: τ ∈ T

}
(I.2)
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converges weakly to a tight process
{(
ζ(τ), ζ ′(τ)

)
: τ ∈ T

}
, where (ζ(τ), ζ ′(τ)) denotes

a vector of two independent Brownian motion processes given by υ(τ) − φ(υ)(τ), where

υ(·) is a tight Brownian bridge (and the same is true if we replace υ(τ) by υ′(τ)).

We proved in Theorem 1 that (I.1) converges weakly to
{(
υ(τ), υ′(τ)

)
: τ ∈ T

}
, where(

υ(·), υ′(·)
)

are independent Brownian bridges. Furthermore, the continuity of ψg(·) im-

plies that
{(
ψg(υ̂N)(τ ; Z̃π), ψg(υ̂N)(τ ; Z̃π′)

)
: τ ∈ T

}
converges weakly to

(
ψg(υ), ψg(υ′)

)
(·)

by the CMT for randomization distributions (Chung and Romano, 2016, Lemma A.6).

Here, continuity follows by noting ψg is a Fredholm operator on a Banach space, hence a

bounded operator. But an operator between normed spaces is bounded if and only if it is

a continuous operator (Abramovich and Aliprantis, 2002). Then, the weak limit of (I.2)

follows by Slutsky’s theorem for randomization distributions (Chung and Romano, 2013,

Theorem 5.2). This finishes the proof of our claim and the first part of the theorem.

For the second part of the theorem, we note that the distribution of K̃, i.e., the

distribution of the norm of a tight Brownian motion process, is strictly increasing and

absolutely continuous with a positive density (Beran and Millar, 1986, Proposition 2).

Thus, under the conditions of the theorem, r̂N(1−α) p→ r(1−α) = inf{t : H(t) ≥ 1−α}

by Lehmann and Romano (2022, Problem 11.30), concluding the proof.

I.3 Proof of Corollary 1

We have that Pr
{
K̃N > r̂N(1 − α)

}
≤ E [ϕ(Z)] ≤ Pr

{
K̃N ≥ r̂N(1 − α)

}
from the con-

struction of the permutation test based on K̃N(Z). Hence, Theorem 2 implies E [ϕ(Z)] →

1 −H(r(1 − α) = α, as desired.
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II Proofs of Lemmas

II.1 Proof of Lemma 1

We are interested in showing the asymptotic behavior of the test statistic under the null

hypothesis. We begin by rewriting (6) in the main text as

υ̂N(τ ; Z) =
√
mn

N
φ̂(τ) {γ̂(τ) − γ(τ)} −

√
mn

N
φ̂(τ) {γ̂ − γ} +

√
mn

N
φ̂(τ) {γ(τ) − γ} ,

(II.1)

where the last term in (II.1) is zero under the null hypothesis. Develop further to obtain

υ̂N(τ ; Z) =
√
mn

N
φ(τ) {γ̂(τ) − γ(τ)} −

√
mn

N
φ(τ) {γ̂ − γ}

+
√
mn

N
[φ̂(τ) − φ(τ)] {γ̂(τ) − γ(τ)} −

√
mn

N
[φ̂(τ) − φ(τ)] {γ̂ − γ}

=
√
mn

N
φ(τ) {γ̂(τ) − γ(τ)} −

√
mn

N
φ(τ) {γ̂ − γ} + op(1) , (II.2)

where the op(1) term holds uniformly over T by Assumption A.3 (ii). For the sake of

notational compactness, denote υN(τ ; Z) and ξN(τ ; Z) as the first and second summands

in (II.2), respectively. Under Assumptions A.1 and A.2 in the main text, {υN(τ ; Z) :

τ ∈ T } converges weakly in ℓ∞(T ) to a Brownian bridge process υ(·) by Shorack and

Wellner (2009, Theorem 2, Ch. 18).

By Assumption A.3 (i), the second term on the right-hand side of (II.2) is in ℓ∞(T )

if and only if supT |φ(τ)| < ∞. But this follows by A.1, which implies F0 is Lips-

chitz continuous and therefore supT |φ(τ)| < ∞. Therefore, {ξN(τ ; Z) : τ ∈ T } con-

verges weakly in ℓ∞(T ) to a mean zero Gaussian process ξ(·) with covariance function

C(ξ(τ1), ξ(τ2)) = φ(τ1)φ(τ2)σ2
0. Thus, the limit process υ(·) + ξ(·) is a Gaussian process
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with zero mean and covariance function

C(υ(τ1), ξ(τ2)) = min{τ1, τ2} − τ1τ2 + φ(τ1)φ(τ2)σ2
0

+ τ1(1 − τ1)φ(τ2){E(Y0|Y0 ≤ F−1
0 (τ2)) − E(Y0|Y0 > F−1

0 (τ2))} . (II.3)

This finishes the first part of the proof. Note that the maps v → ∥v∥ from ℓ∞(T ) into

R are continuous with respect to the supremum norm. Then, a direct application of the

continuous mapping theorem (CMT) yields the final result. This finishes the proof.

II.2 Proof of Lemma 2

Recall the martingale-transformation of the quantile process, eq. (14) in the main text,

is given by

υ̃N(τ ; Z) = υ̂N(τ ; Z) − ψg (υ̂N) (τ ; Z)

= υN(τ ; Z) + ξN(τ ; Z) − ψg (υ̂N) (τ ; Z) + op(1) , (II.4)

where the second equality follows by the asymptotic expansion (II.2) and the op(1) term

holds uniformly over T . By properties of the compensator ψg and (II.2), we have that

ψg (υ̂N) (τ ; Z) = ψg (υN) (τ ; Z) + ξN(Z) + op(1) . (II.5)

Plugging (II.5) into (II.4) yields

υ̃N(τ ; Z) = υN(τ ; Z) − ψg (υN) (τ ; Z) + op(1) , (II.6)

and therefore, {υ̃N(τ ; Z) : τ ∈ T } converges weakly to ζ(·), the standard Brownian

motion by Khmaladze (1981, 4.3). This finishes the proof of the first part of the lemma.

A direct application of the CMT as in the proof of Lemma 1 finishes the proof.
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III Additional Simulation Results

In this Appendix, we compare our approach, based on the quantile process, with that of

Chung and Olivares (2021, CO21 hereafter), based on CDF comparisons via simulations.

The numerical results in Table 1 focus on size control since this is one of the permutation

tests’ salient features. To help us compare both methods, we borrowed the results from

CO21 and stick to their exact design.

Table 1: Size of α = 0.05 tests H0 : Constant Treatment Effect (γ = 1).

Distributions
N Method Normal Lognormal Student’s t
N = 200 CO21 0.0236 0.0354 0.0428
n = 120, m = 80 mtqPermTest 0.0502 0.0490 0.0435

N = 800 CO21 0.0288 0.0470 0.0438
n = 500, m = 300 mtqPermTest 0.0484 0.0490 0.0526

N = 1000 CO21 0.0292 0.0480 0.0474
n = 600, m = 400 mtqPermTest 0.0540 0.0464 0.0456
We calculate the empirical rejection frequencies based on 5000 simulations. C&O results ex-
tracted from Chung and Olivares (2021, Table 1).

Overall, we see that both tests deliver similar rejection frequencies under the null and

have small size distortions across specifications. However, two observations are in place.

First, CO21 test is generally more conservative relative to mtPermTest, particularly in

the Normal case. Second, mtPermTest displays a remarkable finite sample performance

even using a fairly small sample size (N = 200). Therefore, we conclude from the numer-

ical evidence that the quantile-based permutation test offers an advantage with respect

to the CDF case.

IV BGH and The Durbin Problem

BGH apply a Fisher-randomization test using the plug-in method for the individual hy-

potheses (20) (Bitler, Gelbach, and Hoynes, 2017, Section V.B, p. 694). To formalize

the ongoing discussion, we need more notation. Let the observed data for each mutually

exclusive subgroup be given by Zs =
(
Zs

1 . . . , Z
s
Ns

)
=

(
Y 1

s,1, . . . , Y
1

s,ms
, Y 0

s,1, . . . , Y
0

s,ns

)
for

7



all 1 ≤ s ≤ S, where every subgroup Zs has Ns = ms + ns observations.

Under the assumptions of the CSTE model, Y1,s = Y0,s + δs for all s. Then, one

might shift the observations in the control group, Y0,s, by adding these subgroup-specific

δs, that we can estimate as the ATEs within subgroup s, to the actual outcome. Let

Ŷ0,s = Y0,s + δ̂s be the simulated outcomes within subgroup s. This simple transformation

across subgroups yields a simulated outcome under treatment, {Ŷ0,s : 1 ≤ s ≤ S}.

BGH argue that if the CSTE model is a good representation of HTE, then the distribu-

tion of the simulated outcomes should be “close” in some sense to F1,s(·), the distribution

of the observed outcomes under treatment. Therefore, BGH’s permutation test is based

on the two-sample Kolmogorov–Smirnov test statistic (2SKS) for each subgroup,

Ks
N,δ̂

(Zs) = sup
y∈R

∣∣∣V s
N (y, δ̂s; Zs)

∣∣∣ , (IV.1)

where

V s
N (y, δ̂s; Zs) =

√
msns

Ns

{
F̂1,s(y) − F̂0,s(y − δ̂s)

}
. (IV.2)

From the previous test statistic, one can define BGH’s permutation test as follows.

Let Gs be the set of all permutations π of {1, . . . , Ns}. For a fixed subgroup s, BGH’s per-

mutation test based on 2SKS rejects the individual hypothesis (20) if the observed (IV.1)

exceeds the 1 − α/S quantile of the permutation distribution:

R̂K(δ̂)
N,s (t) = 1

Ns!
∑

π∈Gs

1{
Ks

N,δ̂

(
Zs

π(1),...,Zs
π(Ns)

)
≤t

} . (IV.3)

IV.1 Commentary on BGH’s Approach

BGH state that the critical values derived from (IV.3) are asymptotically valid even in

the presence of estimated parameters (Section V, p. 694). However, this claim is false.

To establish the asymptotic validity of the permutation test, we need to show that the
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permutation distribution (IV.3) approximates the true unconditional sampling distribu-

tion of (IV.1). Under relatively weak assumptions, we can show that (IV.3) behaves like

the distribution of (the supremum of) a Brownian bridge (Chung and Olivares, 2021,

Theorem 2). In contrast, the limiting distribution of the 2SKS is given by the distribu-

tion of (the supremum of) a different Gaussian process; it has mean 0 and a covariance

structure that depends on unknown parameters as proved in Ding, Feller, and Miratrix

(2016, Theorem 4). Therefore, the permutation test based on the 2SKS fails to control

the type 1 error asymptotically.

Then, how do we make sense of BGH’s claims? The authors’ justification relies on

a result by Præstgaard (1995) that states the permutation empirical process converges

weakly to a Brownian bridge corresponding to a mixture measure. Indeed, the testing

problem in BGH’s environment satisfies the premises in Præstgaard’s (1995), so (IV.3)

asymptotically does behave like the process in Præstgaard (1995).

In other words, the asymptotic behavior of the permutation distribution (IV.3) does

not change when the estimated δs enters the test statistic instead of the known value

δs. However, it is not the case for the true unconditional limiting distribution of the test

statistic. The asymptotic behavior of the 2SKS statistic does change in the presence of

estimated parameters. Therefore, the permutation distribution does not mimic the true

unconditional distribution of the test statistic in large samples when δs is being estimated,

invalidating BGH’s permutation test. Will BGH’s approach ever be valid? Yes, but only

in the infeasible scenario when we know the subgroup-specific δs. In fact, in this case, the

permutation test achieves the finite sample exactness. Therefore, BGH’s claim that their

method yields asymptotically valid inference is only well-grounded in this extraordinary

case and incorrect otherwise.

V Empirical Results from BGH

Table 2 displays the results from BGH empirical analysis and the proposed permutation

test based on the quantile process in Section 4.2. Columns 3–4 contain the empirical
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results from BGH’s Table 2, which we include verbatim for a fair comparison. Meanwhile,

columns 5–6 contain the results from our proposed method. We note that a joint test of

the family of null hypotheses across these subgroups rejects if we reject any one of the

subgroup-specific null hypotheses (see BGH’s Section V).

Table 2: Testing for Heterogeneity in the Treatment Effect by Subgroups, Time-varying
mean treatment effects by subgroup with participation adjustment

BGH’s Permutation Test Asymptotically Valid
Permutation Test

Number of Number of Number of Number of
Number of Reject Reject Reject Reject

Subgroup Tests at 10% at 5% at 10% at 5%
Full Sample 7 4 4 3 3
Education 21 3 1 3 1
Age of youngest child 21 3 1 3 3
Marital status 21 2 1 3 2
Earnings level seventh Q pre-RA 21 2 1 0 0
Number of pre-RA Q with earnings 21 1 0 1 0
Welfare receipt seventh Q pre-RA 14 3 3 2 2
Education subgroups interacted with

Age of youngest child 49 1 0 6 5
Marital status 35 3 3 4 2
Earnings level seventh Q pre-RA 63 1 0 0 0
Number of pre-RA Q with earnings 63 0 0 2 1
Welfare receipt seventh Q pre-RA 42 1 0 1 0

Age of youngest child interacted with
Marital status 35 1 1 3 1
Earnings level seventh Q pre-RA 63 0 0 1 0
Number of pre-RA Q with earnings 49 1 1 3 1
Welfare receipt seventh Q pre-RA 42 1 0 1 0

Marital status subgroup interacted with
Earnings level seventh Q pre-RA 63 2 1 1 0
Number of pre-RA Q with earnings 63 0 0 2 0
Welfare receipt seventh Q pre-RA 42 1 0 2 1

Earnings level seventh Q pre-RA
subgroups interacted with

Number of pre-RA Q with earnings 49 0 0 2 0
Welfare receipt seventh Q pre-RA 42 1 1 1 1

Number of quarters any earnings
pre-RA subgroup interacted with

Welfare receipt seventh Q pre-RA 42 0 0 2 1
All reported results account for multiple testing using Bonferroni adjustment. We use 1000 permutations for the
stochastic approximation of the permutation distribution.

VI Numerical Computation of υ̃N(τ ; Z)

This section illustrates how to numerically compute the martingale-transformed test

statistic. It largely mirrors Sections 3.3 and 3.4 in CO21. We include this section to keep

things self-contained. We recommend the interested reader see Bai (2003) and Parker

10



(2013) as well. In this section and only to convey the main idea in the most familiar way,

y and x act as surrogates for the “outcome” and “regressor” in the usual linear regression

model. Thus, the reader should not confuse them with the outcome or covariates in the

main text.

Consider υ̃N(τ ; Z) defined in (14) with τ taking discrete values, thus replacing integral

with sums. For instance, suppose ε = t0 < t1 < · · · < tq < τq+1 = 1 − ε is a partition of

T and that τ takes on values on t1, . . . , tq. Write υ̃N(t; Z) in differentiation form:

dυ̃N(t; Z) = d υ̂N(t; Z) − ġ(t)′C(t)−1
∫ 1

t
ġ(r)d υ̂N(r; Z)dt . (VI.1)

Define dti = ti+1 − ti, and let

yi = d υ̂N(ti; Z)

xi = ġ(ti)dti

C(ti) =
q+1∑
k=i

xkx
′
k

∫ 1

t
ġ(r)d υ̂N(r; Z) =

q+1∑
k=i

xkyk ,

then the right hand side of (VI.1) can be interpreted as the recursive residuals:

yi − x′
i

q+1∑
k=i

xkx
′
k

−1
q+1∑
k=i

xkyk = yi − x′
iβ̂i , (VI.2)

where β̂i is the OLS estimator based on the last q − i + 2 observations. From here, it is

straightforward to see that the cumulative sum (integration from [ε, ti)) of (VI.2) gives

rise to a Brownian motion process. Note that here τ takes discrete values but, in the

continuous case, the previous construction boils down to the conclusion in Lemma 1.

With this in mind, we now turn to the numerical calculation of the compensator

and the transformed statistic, υ̃N(τ ; Z). For the sake of exposition, suppose that the

quantile density and score functions are known (the construction is exactly analogous if

we replace ġ with an estimate ġN satisfying assumption A.4 in the main text). Observe
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that the computation of the compensator involves numerical integration. Assume the

partition {ti} is evenly spaced, with the accuracy depending on how fine the grid is, i.e.,

the number of points q. Stack yi and xi in the following manner

Xi =
√

1
q



ġ1(tq+1) ġ2(tq+1)

ġ1(tq) ġ2(tq)
... ...

ġ1(ti) ġ2(ti)


, yi = √

q



υ̂N(tq+1; Z) − υ̂N(tq; Z)

υ̂N(tq; Z) − υ̂N(tq−1; Z)
...

υ̂N(ti; Z) − υ̂N(ti−1; Z)


,

where ġ1(s) = 1 and ġ2(s) = ḟ0(F−1
0 (s))/f0(F−1

0 (s)). The least squares estimate based on

the last q− i+2 observations described on the right-hand side of (VI.2) can be written as

β̂i = (X′
iXi)−1 X′

iyi, which implies that the two-sample martingale-transformed quantile

process (14) can be obtained by numerically integrating from [ε, ti), i.e.,

υ̃N(ti; Z) = υ̂N(ti; Z) − 1
q

i∑
j=1

x′
jβ̂j .

Then, we can calculate the martingale-transformed test statistic, K̃N(Z), as

max
1≤i≤q

∣∣∣∣∣∣υ̂N(ti; Z) − 1
q

i∑
j=1

x′
jβ̂j

∣∣∣∣∣∣ .
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