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Abstract

We introduce a permutation test for heterogeneous treatment effects based on the

quantile process. However, tests based on the quantile process often suffer from estimated

nuisance parameters that jeopardize their validity, even in large samples. To overcome this

problem, we use Khmaladze’s martingale transformation. We show that the permutation

test based on the transformed statistic controls size asymptotically. Numerical evidence

asserts the good size and power performance of our test procedure compared to other

popular quantile-based tests. We discuss a fast implementation algorithm and illustrate

our method using experimental data from a welfare reform.
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1 Introduction

The study of heterogeneous treatment effects (HTE) plays an important role in program eval-

uation. A popular approach to studying HTE involves a form of subgroup analysis: divide the

sample into subgroups defined by covariates, and then estimate the average treatment effects

(ATEs) across subgroups. Then, this approach detects HTE by checking whether the ATEs vary

significantly across subgroups.1

While the ATE subgroup analysis might detect some HTE, it has important limitations

because it focuses on mean impacts (Bitler, Gelbach, and Hoynes, 2006). Therefore, we take an

alternative route to HTE analysis based on the comparison of quantile treatment effect (QTE)

at different quantiles. Under this framework, we test for HTE by checking if the QTEs are

constant across quantiles, i.e., whether the QTEs are equal to an unknown constant γ for all

quantiles. Thus, by looking at the entire distribution and not only the mean, the QTE approach

complements the ATE subgroup analysis by giving the researcher more tools to investigate HTE.

However, tests of HTE based on QTEs come with their own challenges. In particular,

when we estimate the nuisance parameter γ to compute the test statistic, the estimation error

influences the limit behavior of the test statistic. In fact, its asymptotic distribution becomes

intractable because of the dependence on the (unknown) probability distribution generating

the data. This phenomenon is called the Durbin problem in the literature.

In this paper, we introduce a new permutation test for HTE based on the quantile process.

Importantly, we establish the asymptotic validity of our method despite the presence of the

nuisance parameter. To this end, we apply Khmaladze’s (1981) martingale transformation of

the quantile process. Simply put, the Khmaladze transformation removes the estimation effects

by residualizing the quantile process. This transformation yields an asymptotically pivotal

statistic, i.e., a statistic whose limiting distribution does not depend on the fundamentals. Our

main theoretical result shows the permutation distribution of the transformed statistic and
1According to a survey of papers in top economics journals, 40% of the studies report at least one treatment

effect this way (Chernozhukov et al., 2018). This practice sparked the development of tests for HTE. For
example, Crump et al. (2008) test whether the ATEs conditional on covariates are identical for all subgroups.
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the true sampling distribution are the same in large samples, thus restoring the asymptotic

validity of the permutation test with estimated parameters. To complement our theoretical

result and ease implementing our permutation test, we also provide free software in the RATest

R package, available on CRAN, and discuss a fast computational implementation based on the

preprocessing algorithm of Portnoy and Koenker (1997).

To illustrate our method, we revisit the Connecticut’s Jobs First welfare reform. We begin

by showing how to apply our method to test for HTE within subgroups, for a family of sub-

groups formed by pre-treatment characteristics. To do so, we cast our problem as a multiple

testing problem. This multiple testing approach allows us to detect for which subgroups there

is evidence of HTE. When applied to our empirical application, we provide strong evidence

against the null hypothesis of constant treatment effects for a series of subgroups. Our conclu-

sion aligns with the heterogeneous predictions of the static labor model as in Bitler, Gelbach,

and Hoynes (2017, BGH). Even though our results are not qualitatively different from BGH, our

test differs from theirs in two important ways. First, our method compares quantiles as opposed

to distribution functions (CDFs). While this difference may seem innocuous, it has substantial

implications for estimation and inference. For example, the calculation of the quantile process

requires a uniformly consistent estimator of the density, unlike a test statistic based on em-

pirical CDFs (e.g. (6) below). Second, the estimated constant treatment effect enters the test

statistic in both cases, so neither is immune to the Durbin problem. However, BGH’s inference

method overlooks this issue when testing for HTE because they wrongly assumed the asymp-

totic validity of their permutation test with a plug-in estimator. On the other hand, we provide

an asymptotically valid permutation test that overcomes the Durbin problem when testing for

HTE. We elaborate on this second point in Section 7.1 and in the online Appendix IV.

The present paper falls under the umbrella of a literature that has addressed inference for

HTE using tests based on the quantile or the empirical process. As we argued before, this

approach to testing for HTE suffers from the Durbin problem. From this angle, we can classify

the literature into two branches. One approach seeks to restore large-sample pivotality and

use an asymptotic test, while the other uses a resampling technique to construct valid critical
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values. Noteworthy examples of the former include Durbin (1973, 1975, 1985), Khmaladze

(1981, 1993), Koenker and Xiao (2002). Meanwhile, examples of the latter include tests based

on subsampling the quantile process, as in Chernozhukov and Fernández-Val (2005), or the

permutation tests of Ding, Feller, and Miratrix (2016).

Our paper combines ideas from the two modeling approaches we discussed before. This

notion is best explained by comparing our proposed test with Koenker and Xiao’s (2002).

In their paper, the authors show that the Khmaladze transformation of the quantile process

renders an asymptotically pivotal statistic, and therefore valid inference is possible by simu-

lating the asymptotic distribution, often depending on user-specific parameters. Our proposed

method goes one step further. We show that the permutation distribution of the Khmaladze

transformed statistic mimics the true sampling distribution of the test statistic. Thus, our

permutation test offers an off-the-shelf way to generate data-dependent, asymptotically valid

critical values without simulating the limiting distribution. In addition, we show in Section 4.2

that the asymptotic power of our permutation test against contiguous alternatives is identical

to Koenker and Xiao’s (2002) test, so there is no loss in power when using the permutation-

based critical values. For the sake of exposition, we also compare the two methods in a Monte

Carlo experiment in Section 6. We find in our numerical simulations that their approach leads

to a more conservative test procedure than ours across the specifications we considered.

The idea behind using an asymptotically pivotal statistic as the input for a permutation test

is not new, dating back at least to the pioneer works of Neuhaus (1993) and Janssen (1997).

Chung and Romano (2013) generalized this principle, sparking multiple applications of this

method ever since (see Chung and Romano (2016) and their references). In this spirit, our

paper relates closely to Chung and Olivares (2021), who also test for HTE using a Khmaladze

transformed statistic. However, their method is based on the comparison of CDFs as opposed to

quantile functions as we do here. Though CDFs and quantiles are logically connected, they are

conceptually different. We highlight three crucial differences between these approaches that

stem from this fact. First, we argue the test in this paper is more relevant for applications

because distributional effects are more widely studied in terms of quantiles than CDFs (Bitler,
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Gelbach, and Hoynes, 2006; Khandker, Koolwal, and Samad, 2009; Frölich and Sperlich, 2019).

To see why, think of the policymaker in our empirical application. This policymaker may want

to determine whether the welfare reform affects the lower or upper tail more than, say, the center

of the earnings distribution. In this reasonable scenario, the differences in quantile functions

may be a more natural object (estimand) than differences in CDFs because inspecting QTEs

across quantiles is more intuitive for this task. Second, our proposed method takes advantage

of interior point methods applicable in quantile regression that make the calculation of the

quantile process computationally efficient and, therefore, attractive from a practitioner’s point

of view; we discuss these algorithms in Section 5. Lastly, we provide numerical evidence in the

online Appendix III showing that a test based on quantiles exhibits better size control than

one based on CDF comparisons. Thus, we can see the permutation test in this paper is a more

intuitive complement rather than a substitute.

We organize the rest of the paper as follows. In the next section, we introduce our general

setup, including a formal description of the statistical environment. We begin by providing

our hypothesis of interest and the test statistic based on the quantile process and then turn

our attention to the classical construction of the permutation test. As mentioned previously,

the hypothesis of constant treatment effects involves nuisance parameters whose estimation

affects the limiting distribution of the test statistic. In Section 3, we examine these effects. In

particular, we show that the permutation test that ignores the Durbin problem fails to con-

trol the type I error, even asymptotically. Our main result is the content of Section 4. First,

we introduce the Khmaladze transformation of the quantile process and then we establish the

asymptotic validity of a permutation test based on the transformed test statistic in Section 4.2.

We discuss a fast implementation of our test using Portnoy and Koenker’s (1997) preprocessing

algorithm in Section 5. In Section 6 we examine the finite-sample performance of our permuta-

tion test via a Monte Carlo study, and compare its behavior with other popular quantile-based

methods, such as Koenker and Xiao (2002); Chernozhukov and Fernández-Val (2005); Linton,

Maasoumi, and Whang (2005). Finally, in Section 7, we apply our inference method to re-

examine the treatment effect variation of a welfare program on earnings using experimental
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data from Connecticut’s Jobs First. We collect the proofs of the main results and auxiliary

lemmas in the online Appendix. Similarly, we leave additional simulation results, numerical

implementation details, and additional discussion with regard to our empirical application in

the online supplementary appendix.

2 Statistical Environment

Suppose that Y is a real outcome of interest and D is a treatment or policy indicator taking

values 1 if treated, and 0 otherwise. The observed outcome is linked to the potential outcomes

through the relationship Y = Y (1)D + (1 − D)Y (0). The object of interest is individual i’s

treatment effect given by δi = Yi(1) − Yi(0), and we seek whether the treatment effect varies

across i = 1, . . . , N individuals. More formally, the null hypothesis of constant treatment effects

states that

Hs
0 : δi = δ for some δ, ∀ i = 1, . . . , N . (1)

Hypotheses like (1) are not directly testable in practice because typically δ is unknown in

practice and we never observe both potential outcomes for the same experimental unit. Moti-

vated by this limitation, one might consider testing a weaker null hypothesis instead and work

under the Doksum–Lehmann model (Doksum, 1974; Lehmann, 1974). In this model, we test

heterogeneity in the treatment effect by checking whether the treatment impact varies across

quantiles (e.g. Koenker and Xiao, 2002; Chernozhukov and Fernández-Val, 2005).

More formally, let F1(·) and F0(·) denote the distribution functions of Y (1) and Y (0),

respectively. The QTE is given by

γ(τ) = F−1
1 (τ) − F−1

0 (τ), ∀ τ ∈ [0, 1] ,

where F−1
d (τ) = inf{y : Fd(y) ≥ τ}, d ∈ {0, 1}. Throughout this paper, we will focus on

quantiles τ in T , a closed subinterval of (0, 1). Therefore, the testable hypothesis of constant

treatment effect in this paper is given by

H0 : γ(τ) = γ for some γ, ∀ τ ∈ T , (2)
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and the alternative is the hypothesis of heterogeneous effects, that is γ(τ) varies across τ ∈ T .

We note that (1) implies (2), so a test that rejects H0 will reject the more restrictive sharp null

of constant treatment effects.2

One natural candidate for a test statistic for hypothesis (2) is to compare the empirical

quantile functions based on two independent random samples from F1 and F0. More formally,

let Y1,1, . . . , Y1,m and Y0,1, . . . , Y0,n be two independent random samples having distribution

functions F1(·) and F0(·), respectively.3 Let N = m+n and collect these outcomes in one vector

as Z = (Z1, . . . , ZN) = (Y1,1, . . . , Y1,m, Y0,1, . . . , Y0,n). Observe that the number of observations

m and n are deterministic. Thus, the first m entries in Z are drawn from F1 and the last n

from F0. For the case with a random number of observations, see Bertanha and Chung (2022).

The QTE, γ(τ), is estimable in the two-sample setting by

γ̂(τ ; Z) = F̂−1
1 (τ) − F̂−1

0 (τ), τ ∈ T , (3)

where F̂−1
1 (τ) denotes the empirical quantile function based on Y1,1, . . . , Y1,m, and analogously,

F̂−1
0 (τ) is the empirical quantile function based on Y0,1, . . . , Y0,n. If we formulate a quantile

regression model for the binary treatment, then we may estimate the QTE in (3) by the in-

dividual coefficient associated with the policy indicator in the conditional quantile regression

model. More specifically, let F−1
Y |D(τ) = inf{y : FY |D(y) ≥ τ} be the τth quantile of the

conditional CDF of Y given D, and formulate the quantile regression model as,

F−1
Y |D(τ) = α(τ) + γ(τ)D, τ ∈ T ,

then, we can estimate the QTE directly by solving the quantile regression problem

{α̂(τ ; Z), γ̂(τ ; Z)} = arg min
a,b∈R

N∑
i=1

ρτ (Yi − a− bDi) , τ ∈ T , (4)

2To see why, suppose (1) holds, then Y (0) = Y (1)−δ. Since Y (0) is an affine transformation of Y (1), a simple
application of the change of variable theorem implies that F1(y + δ) = F0(y). Take an arbitrary τ and observe
that the change of variable y 7→ F −1

0 (τ) implies δ = F −1
1 (τ) − F −1

0 (0), so γ = δ, as desired. From this, one
could define the null hypothesis in terms of the distribution functions F1(·) and F0(·) as H0 : F1(y + δ) = F0(y),
for some δ (e.g. Ding, Feller, and Miratrix, 2016; Chung and Olivares, 2021).

3That is, Y1,i = Yi among the treated, and Y0,i = Yi among the non-treated. Throughout, we assume
complete randomization; see Zhang and Zheng (2020) for a more detailed discussion about the estimation and
inference for QTE under covariate-adaptive randomization.
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where ρτ is the check function defined as ρτ (u) = u(τ−1{u<0}) and 1{·} is the indicator function.

The test statistic we consider in this paper is the two-sample Kolmogorov–Smirnov statistic

based on the quantile process (2SKSQ):

KN(Z) = sup
τ∈T

|υ̂N(τ ; Z)| , (5)

where υ̂N(· ; Z) is the standardized quantile regression process given by

υ̂N(τ ; Z) =
√
mn

N
φ̂(τ ; Z) {γ̂(τ ; Z) − γ̂} , τ ∈ T , (6)

γ̂ is an estimate of the nuisance parameter γ, φ̂(τ ; Z) is an estimate of φ(τ) = f0(F−1
0 (τ)),

and f0 is the (strictly positive) density of F0. In what follows, we drop the dependency on

Z and write γ̂(τ) and φ̂(τ) to shorten notation when it is clear from the context. Following

Shorack and Wellner (2009, Chp. 18), we normalize the quantile process by φ̂(τ) because, if

the nuisance parameter γ was known, the test statistic in (5) would be asymptotically pivotal

(see also Van der Vaart and Wellner (1996, Example 3.9.24)). We relegate the technical details

and assumptions about all these quantities to Section 3.

Remark 1. Observe that γ̂ enters (6) because the nuisance parameter γ is unknown and

therefore we need to estimate it. In this paper, we estimate γ by the OLS estimator of a

regression of Y on D. Alternatively, let κ > 0 and set T = [κ, 1 − κ] so that T is a closed

subinterval of [0, 1]. Therefore, we can estimate γ by 1
1−2κ

∫ 1−κ
κ γ̂(τ)dτ as well. Even though the

latter method yields approximately the mean treatment effect as estimated by the associated

OLS, one should be cautious about this interpretation in the presence of outliers. ■

Remark 2. Observe that we are recentering the quantile process in (6) by the estimated

nuisance parameter γ̂. To gain more intuition of the recentering embedded in (6), let us show

an equivalent formulation of it. Denote

Z̃ = (Z̃1, . . . , Z̃N) = (Y1,1 − γ̂, . . . , Y1,m − γ̂, Y0,1, . . . , Y0,n) , (7)

where γ̂ is given as before (see Remark 1). That is, we are shifting the first m entries in

Z by the estimated nuisance parameter. Let F̃−1
1 (τ) be the sample analog of the τ -quantile
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function based on the first m entries of Z̃, and F̂−1
0 (τ) be defined as before. Therefore, we can

equivalently write the standardized quantile regression process (6) as

υ̂N(τ ; Z̃) =
√
mn

N
φ̂(τ)

{
F̃−1

1 (τ) − F̂−1
0 (τ)

}
, τ ∈ T , (8)

where φ̂(τ) is unaffected by the recentering because it only depends on the sample from F0.

Similarly, whenever we write KN(Z̃), we mean the 2SKSQ based on (8). ■

2.1 Adding Covariates

In practice, we typically observe a vector of baseline covariates besides D. However, adding

covariates is not innocuous in our context because the interpretation of conditional and uncon-

ditional quantiles is different. To see why, suppose the outcome of interest is earnings, as in

the empirical illustration of Section 7. We can argue that the 0.9 unconditional quantile of the

earnings distribution may be quite different from the 0.9 quantile of the earnings distribution

conditional on education. For example, the high earners within each education bracket (no

high-school diploma, high-school diploma, or more than high-school diploma) might not be the

high earners overall.4

Following the ongoing discussion, we will consider a null hypothesis based on the condi-

tional QTEs in this Section. To describe how to handle the baseline covariates in our anal-

ysis, we introduce additional notation. Let X = (X1,X2) = (D,X2) ∈ Rl denote the

vector of covariates, where X2 contains the pre-treatment characteristics. In the spirit of

Abadie, Angrist, and Imbens (2002), we impose the linear quantile regression model given by

F−1
Y |X(τ) = X ′β(τ) = β1(τ)D + X ′

2β2(τ) for all τ . Then, the QTE at τ conditional on X2 = x

is βx
1 (τ). It is given by the difference in conditional τ -quantiles of Y1 and Y0:

βx
1 (τ) = F−1

Y |D=1,X2=x(τ) − F−1
Y |D=0,X2=x(τ) .

4Observe that this problem does not arise when we are dealing with averages because the unconditional
mean is the average of conditional means by the law of iterated expectations.
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The hypothesis of interest for X2 = x now becomes

Hx
0 : βx

1 (τ) = βx
1 , for some βx

1 , τ ∈ T . (9)

As is standard in the quantile regression literature, we can estimate the parameters β(τ) by

β̂(τ ; X) = arg min
b∈Rl

N∑
i=1

ρτ (Yi − X ′
ib) , τ ∈ T .

Therefore, we can mirror the testing procedure described in the previous Sections and consider

covariates X2 for testing Hx
0 in (9), with βx

1 (τ) and βx
1 playing the role of γ(τ) and γ, provided

some standard regularity conditions on X2 hold (e.g. Koenker and Machado, 1999, Assumption

2). We refer to the reader to Koenker and Xiao (2002, Theorems 2 and 3), and Chernozhukov

and Fernández-Val (2005, Proposition 1) for further details. We will focus on the case with no

covariates from now on.

2.2 Permutation Test based on the Quantile Process

Before turning to the theoretical results, we first show how the construction of a permutation

test to assess (2) works. To facilitate the exposition, we will illustrate this construction using

the test statistic in eq. (8). To do so, we introduce further notation. Let GN be the set of

all permutations π of {1, . . . , N}, so |GN | = N !. Fix a nominal level α ∈ (0, 1), and set

k = N ! − ⌊N !α⌋. We can describe the construction of the permutation test in four steps as

follows:

Step 1. Calculate γ̂ as in Remark 1 and recenter the units from F1, i.e., {Y1,i − γ̂ : 1 ≤ i ≤ m}.

At the end of this step, we are left with Z̃ in (7). See also Remark 2 for more intuition.

Step 2. Given Z̃ = z̃, calculate the test statistic KN(z̃) based on (8).

Step 3. Recompute KN(z̃) for all permutations π ∈ GN . Denote by K(1)
N (z̃) ≤ K

(2)
N (z̃) ≤ · · · ≤

K
(N !)
N (z̃) the ordered values of {KN(z̃π) : π ∈ GN}, where z̃π denotes the action of π ∈ GN on

z̃, i.e., a permutation of the recentered data. Denote K(k)
N (z̃) as the “critical value.”
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Step 4. Define numbers M+(z̃) and M0(z̃)

M+(z̃) =
∣∣∣{1 ≤ j ≤ N ! : K(j)

N (z̃) > K(k)
N (z̃)}

∣∣∣
M0(z̃) =

∣∣∣{1 ≤ j ≤ N ! : K(j)
N (z̃) = K(k)

N (z̃)}
∣∣∣ .

Step 5. The permutation test is given by

ϕ(z̃) =



1 KN(z̃) > K
(k)
N (z̃)

a(z) KN(z̃) = K
(k)
N (z̃)

0 KN(z̃) < K
(k)
N (z̃)

, where a(z̃) = N !α−M+(z̃)
M0(z̃) . (10)

Thus, the permutation test ϕ(z̃) rejects the hypothesis (2) if KN(z̃) exceeds the “critical value”

K
(k)
N (z̃), does not reject when KN(z̃) < K

(k)
N (z̃), and will randomize the decision with proba-

bility a(z̃) when KN(z̃) = K
(k)
N (z̃).

Remark 3. The calculation of the permutation test is computationally prohibitive for mod-

erately large N , which is typically the case in practice. In these scenarios, it is possible to

rely on a stochastic approximation without affecting the permutation test’s theoretical prop-

erties by sampling permutations π from GN with or without replacement. More formally, let

ĜN = {π1, . . . , πM}, where π1 is the identity permutation and π2, . . . , πM are i.i.d. uniform

on GN . The same construction follows if we replace GN with ĜN , and the approximation is

arbitrarily close for M sufficiently large (Romano, 1989, Section 4). From now on we focus on

GN while in practice we fall back on ĜN (e.g. the implementation in Algorithm 2 below). ■

The previous construction yields an exact level α test in finite samples provided that the

distributions of Z̃ and Z̃π are the same under the null hypothesis for any permutation π ∈ GN

(e.g. Lehmann and Romano, 2022, Theorem 17.2.1). This would be the case if, for example,

the researcher knows γ. In such a case, the null hypothesis is sharp, equation (7) becomes

(Y1,1 − γ, . . . , Y1,m − γ, Y0,1, . . . , Y0,n), and it follows that Z̃ and Z̃π have the same distribution

under the null hypothesis.

However, as we argued before, knowing γ is infeasible in most empirically relevant scenarios.
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Therefore, we need to resort to large-sample approximations and consider a permutation test

with asymptotic rejection probability equal to α for the more general null hypothesis (2). To

facilitate the study of the limiting behavior of the permutation test ϕ(z̃), it is useful to consider

the permutation distribution of the 2SKSQ, defined as follows:

R̂K
N (t) = 1

N !
∑

π∈GN

1{KN(z̃π(1),...,z̃π(N))≤t} . (11)

Roughly speaking, the permutation test rejects the null hypothesis (2) if KN(z̃) exceeds the

upper α quantile of the permutation distribution. In the next sections, we will study the

large-sample behavior of the permutation distribution (11).

3 Asymptotic Results

We now introduce three standard assumptions in the quantile regression literature, which are

relevant throughout the paper:

A. 1. Let 0 < a < b < 1. F0 is continuously differentiable on the interval [F−1
0 (a)−ε, F−1

0 (b)+ε]

for some ε > 0, with strictly positive derivative f0, and analogously for F1.

A. 2. Let N = n+m, n → ∞, m → ∞, and pm = m/N → p ∈ (0, 1) with pm −p = O(N−1/2).

A. 3. There exists estimators of γ and φ(τ), denoted γ̂ and φ̂, satisfying i)
√
N{γ̂−γ} = Op(1),

and ii) supτ∈T |φ̂(τ) − φ(τ)| = op(1).

Several remarks are in place. We would replace Assumption A.2 by the typical full-rank

condition (e.g. Koenker and Machado (1999, Assumption A.2)) if we consider covariates as in

Section 2.1. However, without covariates, the full-rank condition simplifies to A.2. Moreover,

the convergence rates in Assumption A.2 play a key role when we investigate the asymptotic

behavior of the permutation distribution (11). Assumption A.3 guarantees we can replace the

unknown quantities, γ and φ(τ), with estimates satisfying general assumptions. For example,

suppose γ̂ is given by the OLS estimator of Y on D (see Remark 1). If σ2
d ≡ V(Yd,i) < ∞,

d ∈ {0, 1}, then γ̂ satisfies A.3 (i) by the central limit theorem for i.i.d. random variables.
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Lastly, it is generally easy to find estimates φ̂ satisfying A.3 (ii) for F0 satisfying assumption A.1.

For example, the so-called kernel class of estimates has this property (Wand and Jones, 1994).

In this paper, we will consider the adaptive estimation and kernel-smoothing methods studied

in Portnoy and Koenker (1989). Besides producing an estimate φ̂ satisfying the uniformity

condition A.3 (ii) (see Portnoy and Koenker, 1989, Lemma 3.2), this approach has useful

implications for the calculation of the Khmaladze transformation, as we discuss in Section 4.

It is worth mentioning that the asymptotic properties of the permutation test remain un-

affected even if we estimate φ(τ), as long as assumption A.3 holds. However, we will see that

the previous statement is not true for estimated γ, even if it satisfies A.3 (i). Indeed, the esti-

mated nuisance parameter γ̂ renders the limiting distribution of KN(Z) intractable because of

the dependence on the unknown probability distribution generating the data. Thus, the corre-

sponding permutation test fails to control the Type I error even asymptotically. We formalize

these ideas in the next subsection.

3.1 Limiting Null Distribution of KN(Z)

The following result is a special case of Koenker and Xiao (2002, Theorem 2) applied to the

HTE testing problem in this paper. We include it here as a lemma for completeness. This

lemma establishes the asymptotic behavior of the quantile process and 2SKSQ, eqs. (6) and (5)

respectively, under the null hypothesis (2). To ease exposition, we collect the definitions of all

the processes and their covariance functions, as well as the proof, in the online appendix.

Lemma 1. Under assumptions A.1–A.3, the process {υ̂N(τ ; Z) : τ ∈ T } converges weakly in

ℓ∞(T )—the space of bounded functions on T equipped with the uniform norm—to a Gaussian

process υ(·) + ξ(·) under the null hypothesis (2). Here, υ(·) + ξ(·) has zero mean and covari-

ance function C(υ(τ1), ξ(τ2)), given in the online appendix. Furthermore, KN(Z) given by (5)

converges in distribution to K ≡ supτ∈T |υ(τ) + ξ(τ)| with CDF given by J(t) ≡ Pr {K ≤ t}.

Several remarks are in order. First, the limit process υ(·) + ξ(·) consists of two parts:

υ(·), a Brownian bridge, and ξ(·), a Gaussian process with zero mean and covariance function
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C(ξ(τ1), ξ(τ2)) = φ(τ1)φ(τ2)σ2
0. We can show that if γ was known, but otherwise under the

same hypotheses of Lemma 1, the process υ̂N(·; Z) would converge to a Brownian bridge. Yet,

the estimation of the nuisance parameter introduced the extra component ξ(·). Second, the

covariance function C(υ(τ1), ξ(τ2)) depends on f0(·) and F0(·), which are generally unknown

(see eq. (II.3) in the online appendix). Therefore, we cannot simulate the limiting distribution

of the test statistic KN(Z), which makes it difficult to use this test in empirical work.

In the next theorem, we establish the asymptotic behavior of the permutation test based on

2SKSQ. We show that the corresponding permutation distribution of the test statistic does not

approximate the unconditional distribution of the test statistic. Note that we do not assume

the null hypothesis (2).

Theorem 1. Consider testing the hypothesis (2) based on the test statistic (5). Under assump-

tions A.1–A.4, the permutation distribution (11) based on the 2SKSQ statistic KN(Z) is such

that

sup
t∈R

∣∣∣R̂K
N (t) −G(t)

∣∣∣ p→ 0 , (12)

where G(·) is the CDF of K∗ ≡ supτ∈T |υ(τ)|, and υ(·) is a Brownian bridge process.

From Theorem 1 we see that the permutation test based on KN(Z) fails to achieve the

asymptotic rejection probability of α because the limiting behavior of the sampling and permu-

tation distribution are different. In the next section, we provide a new permutation test based

on a martingale transformation of (6).

4 Asymptotically Valid Permutation Test

4.1 Limiting Null Distribution of K̃N(Z)

We present a brief discussion about the martingale transformation of Khmaladze (1981) in this

section. For a more detailed discussion, we refer the reader to Koenker and Xiao (2002) and

Bai (2003). Let g(s) = [g1(s), g2(s)]′ = [s, φ(s)]′ on [0, 1], where φ(τ) = f0(F−1
0 (τ)). Then, the
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derivative of g, denoted by ġ(·), is defined to be ġ(s) = [ġ1(s), ġ2(s)]′ = [1, (ḟ0/f0)(F−1
0 (s))]′.

The function g is closely connected to the score function. Indeed, we can show that g is the

integrated score function of the model (see Bai (2003, Section IV)).

Let D[0, 1] be the space of càdlàg functions on [0, 1], and denote by ψg(h)(·) the compensator

of h, ψg : D[0, 1] → D[0, 1] given by

ψg(h)(t) =
∫ t

0

[
ġ(s)′C(s)−1

∫ 1

s
ġ(r)dh(r)

]
ds , (13)

where C(s) =
∫ 1

s ġ(t)ġ(t)′dt. We can think of ψg(h)(·) as the functional analog of the fit-

ted values in the regression context, where the extended score ġ(r) acts as the regressor, and

C(s)−1 ∫ 1
s ġ(r)dh(r) as the orthogonal projection of dh(r) onto ġ(r) over the interval (s, 1]. Fol-

lowing this interpretation, the residuals at s are given by dh(s) −
[
ġ(s)′C(s)−1 ∫ 1

s ġ(r)dh(r)
]
ds.

As explained in Bai (2003, Section III.A), the residuals in the previous display are recursive

residuals because we perform a projection at each point s. Therefore, the cumulative sum of

the recursive residuals over [0, r] will lead to a Brownian motion. We will show this for our case

in Lemma 2 below. This is why Bai (2003) calls the martingale transform a continuous-time

detrending operation. We provide more intuition about this interpretation and the numerical

calculation of the compensator (13) in more detail in the online appendix (see Section VI).

Following the ongoing discussion, define the two-sample martingale-transformed quantile

process of (6) as

υ̃N(τ,Z) = υ̂N(τ ; Z) − ψg(υ̂N)(τ ; Z) , (14)

and the resulting martingale transformation of the 2SKSQ as

K̃N(Z) = sup
τ∈T

|υ̃N(τ ; Z)| . (15)

Similar to φ(τ), we typically do not know function ġ(s) in practice, so we need to estimate

it. However, the estimation of ġ(s) will not affect the asymptotic properties of the martingale

transformation under the following technical condition holds.

A. 4. There exists an estimator, ġN(τ), such that supτ∈T |ġN(τ) − ġ(τ)| = op(1).
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There are several ways to estimate score functions like ġ(s), e.g., smoothing splines (Cox,

1985). In this paper, we employ the adaptive kernel method of Portnoy and Koenker (1989).

The reason is two-fold. First, estimation of the function ġ(s) automatically generates an esti-

mate of the density φ(s). Second, these estimates satisfy the uniformity conditions in A.4 and

A.3 (ii), respectively (Portnoy and Koenker, 1989, Lemma 3.2). For alternative estimators with

similar uniform convergence properties, see Bhattacharya (1967) and Schuster (1969).

The following result states the asymptotic behavior of the martingale-transformed 2SKSQ

statistic. As in the case of Lemma 1, it is a particular case of Koenker and Xiao (2002, Theorem

3) applied to our testing problem. We include it here as a lemma for the sake of exposition.

See the online appendix for a proof of this result.

Lemma 2. Under assumptions A.1–A.4, we have that the process {υ̃N(τ) : τ ∈ T } converges

weakly in ℓ∞(T ) to ζ(·) under the null hypothesis (2). Here, ζ(·) denotes the standard Brownian

motion. Furthermore, the test statistic K̃N(Z), defined in (15), converges in distribution to

K̃ ≡ supτ∈T |ζ(τ)| with CDF given by H(t) ≡ Pr {K̃ ≤ t}.

Lemma 2 demonstrates that the Khmaladze transformation renders a test statistic whose

limiting distribution does not depend on the fundamentals. Therefore, it is possible to carry on

valid inference in large samples by simulating the limiting distribution of (15). To gain further

intuition as to why the asymptotic shift ξ(·) in Lemma 1 is no longer affecting the asymptotic

behavior of the test statistic, we note the compensator (13) i) is a linear mapping with respect

to h, and ii) satisfies ψg(h)(cg) = cg for a constant or random variable c (Bai, 2003). Combine

these properties with the asymptotic representation in the proof of Lemma 1 and write

υ̃N(τ ; Z) = υ̂N(τ ; Z) − ψg (υ̂N) (τ ; Z)

= υN(τ ; Z) + ξN(τ ; Z) − ψg (υN + ξN) (τ ; Z) + op(1)

= υN(τ ; Z) − ψg(υN)(τ ; Z) + op(1) .

From here, we can see the Khmaladze transformation renders the transformed process asymp-

totically distribution-free (see the proofs in Section II in the online appendix for more details).

Even though the Khmaladze transformation yields an asymptotically pivotal statistic, the
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limiting distribution of (15) depends on the norm, the pre-specified T , and the number of

covariates. For example, Koenker and Xiao (2002, Appendix A) approximate ζ(·) by a Gaussian

random walk with 20, 000 replications and use the ℓ1 norm to simulate K̃ and its critical values.

In the next Section, we formally introduce our permutation test and show how it offers an

off-the-shelf way to generate data-dependent, asymptotically valid “critical values” without

simulating the limiting distribution.

4.2 Main Result

We now turn to our main theoretical result—the permutation test based on the martingale-

transformed statistic behaves asymptotically like the sampling distribution. Let R̂K̃
N be the

permutation distribution defined in (11) with KN replaced by K̃N. The following theorem

establishes the limiting behavior of R̂K̃
N and its upper α-quantile r̂N(1 − α) = inf{t : R̂K̃

N (t) ≥

1 − α}. Note that we do not impose the null hypothesis (2) when deriving the results.

Theorem 2. Consider testing the hypothesis (2) at level α ∈ (0, 1) based on the test statis-

tic (15). Under assumptions A.1–A.4, the permutation distribution (11) based on the the

Khmaladze transformed statistic K̃N is such that

sup
t∈R

∣∣∣R̂K̃
N (t) −H(t)

∣∣∣ p→ 0 , (16)

where H(·) is the CDF of K̃ defined in Lemma 2. Moreover, if r(1−α) = inf{t : H(t) ≥ 1−α},

then r̂N(1 − α) p→ r(1 − α).

Theorem 2 states that the permutation distribution R̂K̃
N (·) asymptotically approximates

the (unconditional) limit distribution of the Khmaladze transformed statistic K̃N, which is the

supremum of a Brownian motion process by Lemma 2. Therefore, the permutation test of the

null (2) based on K̃N exhibits asymptotic size control. The second part in the conclusion of

Theorem 2 states that we can use the upper-α quantiles r̂N of the permutation distribution

R̂K̃
N (·) as “critical values.” This follows from the fact that the distribution of the norm of a

Brownian motion is absolutely continuous with a positive density (see online Appendix for more

details I.2). We summarize the ongoing discussion in the following corollary:
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Corollary 1. Let ϕ(Z) be the permutation test as described in (10) with KN replaced by K̃N.

Under assumptions A.1–A.4, it follows by Theorem 2 that E [ϕ(Z)] → α under H0.

Since the conclusion of Theorem 2 holds irrespective of whether the null hypothesis (2)

holds, we can talk about the power properties of the permutation test. Indeed, the permutation

test has the same limiting local power as the asymptotic test based on K̃N(Z) for contiguous

alternatives. To see why, observe the asymptotic test rejects the null hypothesis when K̃N(Z) >

r(1−α). Suppose that K̃N(Z) converges in distribution to some law H ′(·) under some sequence

of alternatives that are contiguous to a distribution satisfying the null hypothesis. Then, the

power of the test approaches 1 − H ′(H−1(1 − α)). Observe that by Theorem 2 the “critical

values” from the permutation distribution, r̂N, are such such that r̂N
p→H−1(1 − α). The same

result follows under a sequence of contiguous alternatives, implying the same limiting local

power of the test based on K̃N(Z). Therefore, there is no loss in power when using critical

values set by the permutation test.

5 Algorithms and Numerical Implementation

The permutation test we introduce in this paper relies on the whole quantile process so we need

to estimate several conditional quantile models as an ensemble, e.g. Section 6. Moreover, this

process is repeated for permutations π ∈ GN of the data. Therefore, the calculation of our test

can be computationally expensive when N is large.

In this section, we cover some algorithmic aspects for estimation with many τ ’s and π’s based

on the preprocessing idea of Portnoy and Koenker (1997). Preprocessing substantially reduces

the computation burden of our calculations while delivering the same numerical estimates as

the standard estimation procedures.5 We can think of preprocessing in a simple way as follows.

Suppose that we have a preliminary solution at some τ ∗, e.g., an estimate based on a random

subsample of the whole sample. Then, we might use the residuals from this quantile regression

to inform the sign of the residuals in the whole sample. We then collect the pseudo-observations
5For more complexity results based on worst-case analysis, see Portnoy and Koenker (1997, Sec 5).
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with either “’large” negative or “’large” positive residuals into a sample Portnoy and Koenker

coined as glob. As it turns out, we can remove the “globbed” sample from the optimization

problem, thus reducing the effective sample size.

To formalize the ongoing discussion, we borrow notation from Portnoy and Koenker (1997).

Fix τ , and suppose that we “knew” that some subset JL of the observations fall below the

hyperplane defined by the check function ρτ , and that another subset JH fall above. Then, the

quantile regression problem in (4) yields the same solution as the following revised problem

{α̂(τ), γ̂(τ)} = arg min
a,b∈R

∑
i/∈(JL∪JH)

ρτ (Yi − a− bDi) + ρτ (YL − a− bDL) + ρτ (YH − a− bDH) ,

(17)

where Dk = ∑
i∈Jk

Dk for k ∈ {L,H}, and YL and YH can be chosen arbitrarily small or large to

ensure that the signs of their corresponding residuals remain negative and positive, respectively.

We can now define the globbed observations as (Yk, Dk), k ∈ {L,H}. As we argued before, the

revised problem (17) reduces the effective sample size because we withdraw the #{JL ∪JH}−2

observations in the globs.

The next algorithm outlines the implementation of preprocessing for a single quantile τ .

See Koenker (2020) and Chernozhukov, Fernández-Val, and Melly (2020) for more information

about the R and Stata implementations.

Algorithm 1 (Portnoy and Koenker (1997))

1. Solve for the model (4) using a subsample of size N0 = (2N)2/3. Denote {α̃(τ), γ̃(τ)} as

the quantile regression estimate of α(τ) and γ(τ) based on N0.

2. Calculate the residuals ε̃i and a conservative estimate of their standard errors, denoted

s̃i. Calculate the τ ± 1/(2N) × θN0 quantiles of ε̃/s̃. The parameter θ can be taken

conservatively to be approximately 1.

3. Define the globs by collecting the observations below τ − 1/(2N) × θN0 into JL, and the

observations above τ + 1/(2N) × θN0 into JH . Keep the observations between these two

quantiles for the next step.
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4. Solve the revised problem (17) and obtain {α̂(τ), γ̂(τ)}.

5. Verify that all the observations in globs JL and JH have the anticipated residual signs.

If all the signs agree with those predicted by the confidence bands: return the optimal

solution. If less than 0.1 × θN0 incorrect signs: adjust the globs by re-introducing these

observations into the new globed observations and resolve as in Step 4. If more than

0.1 × θN0 incorrect signs: go back to step 1 and increase N0 (e.g., double the size).

Building upon Algorithm 1, Chernozhukov, Fernández-Val, and Melly (2020, Algorithm

2) show how to extend the preprocessing algorithm to many quantiles τ1 < τ2 < · · · <

τT . In a nutshell, their algorithm recursively globs adjacent quantiles, yielding estimates

{(α̂(τt), γ̂(τt)) : 1 ≤ t ≤ T} for a grid of evenly spaced quantiles τ ∈ {τ1, . . . , τT }. We borrow

their insights and show how to apply this idea to accelerate the calculation of a permutation

test based on the quantile process in the next subsection.

5.1 Preprocessing for Permutation-based Inference

Suppose we are interested in estimating T quantile regressions for a grid of evenly spaced

quantiles τ ∈ {τ1, . . . , τT } for each permutation π ∈ GN of the data. Let Zπ = (Zπ(1), . . . , Zπ(N))

be the permuted data for a permutation π ∈ GN . The next algorithm describes how to estimate

{(α̂πj (τt), γ̂πj (τt)) : 1 ≤ t ≤ T, 1 ≤ j ≤ M} for T quantiles and M permutations π of the data

(see Remark 3).

Algorithm 2

For each permutation j = 1, . . . ,M , including the identity,

1. Take a random permutation of data, denoted by {(Yπj(i), Dπj(i), 1 ≤ i ≤ N}.

2. Using the permuted data, estimate (α̂πj (τ1), β̂πj (τ1)) as in Algorithm 1.

3. For each quantile τt, t = 2, . . . , T ,

a) Use (α̂πj (τt−1), β̂πj (τt−1)) as a preliminary estimate.
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b) Calculate the residuals ε̂πj(i) = Yπj(i) − α̂πj (τt−1) − γ̂πj (τt−1)Dπj(i), as well as a con-

servative estimate of their standard errors, denoted ŝπj
. Calculate the τ ± 1/(2N) ×

θ(2N)1/2 quantiles of ε̂πj
/ŝπj

, where the parameter θ is currently set to 3.

c) Define the globs by collecting the observations below τ − 1/(2N) × θ(2N)1/2 into JL,

and the observations above τ + 1/(2N) × θ(2N)1/2 into JH . Keep the observations

between these two quantiles for the next step.

d) Solve the revised problem (17) for permuted data {(Yπj(i), Dπj(i), 1 ≤ i ≤ N} and

obtain (α̂πj (τt), γ̂πj (τt)).

e) Verify that all the observations in globs have the anticipated residual signs. If all

the signs agree with those predicted by the confidence bands: return (α̂πj (τt), γ̂πj (τt)).

If less than 0.1 × θ(2N)1/2 incorrect signs: adjust the globs by re-introducing these

observations into the new globed observations, and resolve as in Step 3.d). If more

than 0.1 × θ(2N)1/2 incorrect signs: go back to step 3.b) and double θ.

At first glance, it is difficult to see where the speed gains come from. As we argued at the

end of the previous subsection, preprocessing with many τ ’s boils down to globbing data for

adjacent quantiles. Therefore, the residuals at τt−1 should be a reasonable predictor for the

residuals at τt if τt−1 and τt are “close.” As Chernozhukov, Fernández-Val, and Melly (2020)

point out, we can formalize this notion of closeness by assuming
√
N(τt − τt−1) = Op(1). Thus,

under this closeness assumption, we only need to keep a sample proportional to N1/2 in Step

3.c) above, as opposed to N2/3 like in Algorithm 1.

6 Monte Carlo Experiments

This section examines the finite sample performance of the proposed test compared to other

methods based on the quantile regression process. We adhere to the design in Koenker and

Xiao (2002) and Chernozhukov and Fernández-Val (2005). For 1 ≤ i ≤ N , we generate the

potential outcomes according to Yi(0) = εi and Yi(1) = δi + Yi(0), where δi = γ + σγYi(0).
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The parameter σγ denotes the different levels of heterogeneity, with σγ = 0 inducing a constant

treatment effect.

In each specification we consider, εi, 1 ≤ i ≤ N are i.i.d. according to standard normal,

lognormal, and Student’s t distribution with 5 degrees of freedom. For the calculation of the

quantile process, we consider an equally spaced grid of quantiles τ ∈ {0.1, 0.15, . . . , 0.9} and

N ∈ {100, 400, 1000}. We set Pr{D = 1} = 0.4 for Table 1 and Pr{D = 1} = 0.5 for Table 2.

We implement our permutation test using R package RATest, available on CRAN. To esti-

mate the density and score functions, we used the univariate adaptive kernel density estimation

in Portnoy and Koenker (1989), where we adopted the normal kernel and set Silverman’s local

bandwidth to control the degree of smoothness of the estimate (see Portnoy and Koenker (1989,

Section 4) for more details). RATest estimates these quantities using the akj function from R

package quantreg. As we argued in Sections 3 and 4, these estimates satisfy the uniformity

conditions A.3 (ii) and A.4. Finally, in all of the tests we consider in this section, we calculate

γ̂ as the slope parameter in a linear regression of Y on D (see Remark 1).

In the simulation results in Tables 1–2, we compare the proposed permutation test based

on (15)—which we denote mtPermTest—against five other alternative tests.

Classical: This is the permutation test based on the 2SKSQ with the true values φ(τ) and γ.

Even though this is an infeasible test, we present it as a benchmark case.

Naive KS: This is the 2SKSQ test. We call it naive because it ignores the effect that γ̂ has

on the limiting distribution. Thus, this test naively relies on the asymptotic critical values

simulated from the distribution function of the supremum of a Brownian bridge.

mtQR: This is Koenker and Xiao’s (2002) test. We estimate the martingale-transformed test

statistic using R package quantreg. The asymptotic test uses simulated critical values. See

the online appendix in Koenker and Xiao (2002).

Subsampling: This test, proposed by Chernozhukov and Fernández-Val (2005), is based

on subsampling the recentered inference process
√
N supτ∈T |{γ̂(τ) − γ(τ)} − {γ̂ − γ}|, where

{γ̂(τ) − γ̂} is used itself to “estimate” {γ(τ) −γ}. Arguing as in Chernozhukov and Fernández-
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Val (2005, Section 3.4), we set subsampling block size b = 20 + N1/4, and 250 bootstrap

repetitions within each simulation.

Bootstrap: This test is based on the full-sample bootstrap approximation of the sampling

distribution of the 2SKSQ statistic. To do so, we borrow the insights from Linton, Maasoumi,

and Whang (2005, Section 6) and apply them to the present context. Arguing as in Ding, Feller,

and Miratrix (2016), we recenter treatment and control groups, and sample with replacement

from the pooled vector of residuals.

Table 1 reports rejection probabilities under the null hypothesis (2) with γ = 1. Across

specifications, our permutation test exhibits remarkable performance in terms of size control

even though we estimate the score and density functions. As expected by the theory, the Clas-

sical case has empirical rejection probabilities close to the nominal level across specifications.

However, we note that Naive, mtQR and Subsampling tests yield rejection probabilities

substantially below the nominal level, though subsampling yields rejection rates closer to the

nominal level in the normal case as N increases. On the other hand, the Bootstrap test shows

considerable size distortions across specifications.

Table 2 reports the rejection probabilities under the alternative hypothesis, i.e., σγ > 0. We

compare the performance of our proposed test with Subsampling and mtQR for several levels

of heterogeneity σγ and γ = 1. We no longer consider the other tests because they are either

infeasible or invalid. In all the alternatives we consider, our permutation test is considerably

more powerful than Subsampling and mtQR.

7 Empirical Application

As we emphasized in the introduction, one popular approach to investigating HTE consists

of calculating ATEs for a series of subgroups defined by covariates. Under the assumption

of constant treatment effects within subgroups, this type of subgroup analysis concludes the

existence of HTE if the ATEs vary significantly across subgroups. Thus, we will refer to this

type of analysis as the constant subgroup treatment effect (CSTE) model.
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Table 1: Size of α = 0.05 tests H0 : Constant Treatment Effect (γ = 1).

Distributions
N Method Normal Lognormal t5

Classical 0.0551 0.0520 0.0478
Naive 0.0018 0.0008 0.0038

N = 100 mtQR 0.0012 0.0004 0.0000
Subsampling 0.0212 0.0132 0.0192
Bootstrap 0.0840 0.0838 0.0708
mtPermTest 0.0478 0.0492 0.0455

Classical 0.0458 0.0490 0.0548
Naive 0.0004 0.0010 0.0032

N = 400 mtQR 0.0012 0.0074 0.0000
Subsampling 0.0422 0.0043 0.0136
Bootstrap 0.0820 0.0862 0.0840
mtPermTest 0.0480 0.0424 0.0508

Classical 0.0502 0.0512 0.0514
Naive 0.0004 0.0004 0.0016

N = 1000 mtQR 0.0010 0.0090 0.0000
Subsampling 0.0474 0.0080 0.0101
Bootstrap 0.0814 0.0806 0.0818
mtPermTest 0.0500 0.0526 0.0482

The rejection probabilities based on 5000 replications for the five tests defined in the text, three data
generating processes, and three different sample sizes. We use 1000 permutations for the stochastic
approximation of the permutation distribution.

Table 2: Power of α = 0.05 tests for several levels of heterogeneity σγ, and γ = 1

N mtQR Subsampling mtPermTest
n = m σγ = 0 σγ = 0.2 σγ = 0.5 σγ = 0 σγ = 0.2 σγ = 0.5 σγ = 0 σγ = 0.2 σγ = 0.5
Normal Outcomes
100 0.009 0.053 0.497 0.0212 0.054 0.302 0.0472 0.1388 0.4844
400 0.023 0.412 0.997 0.0422 0.308 0.951 0.0480 0.4190 0.9720
800 0.041 0.792 1 0.0384 0.614 1 0.0500 0.7100 1
Lognormal Outcomes
100 0.0004 0.0322 0.1878 0.0132 0.057 0.302 0.0492 0.1420 0.5122
400 0.0074 0.1844 0.8840 0.0043 0.304 0.970 0.0424 0.4350 0.975
800 0.0092 0.4382 1 0.0320 0.579 1 0.0560 0.7160 1

The rejection probabilities based on 5000 replications for three data generating processes, and three different
sample sizes. We use 1000 permutations for the stochastic approximation of the permutation distribution.
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Even though the CSTE model is easy to implement and may capture some of the treatment

effect variation, it has important limitations. The reason is straightforward: experimental

groups may vary in ways beyond the mean. Thus, we may have evidence of ATEs that do not

differ across subgroups and yet have HTE, e.g., the groups may differ in higher moments.6

The next section describes how to use our method to test the underlying assumption be-

hind the CSTE model, namely, whether the treatment effect is constant within subgroups. More

generally, we explain how to use the proposed permutation test to detect for which subgroups,

if any, there is heterogeneity in the treatment effect. Given we are interested in simultane-

ously testing for HTE for a family of subgroups, we account for multiple testing using Holm’s

step-down procedure. To illustrate the mechanics and motivate our procedure, we analyze ex-

perimental data from a welfare reform in Connecticut: Jobs First. We conclude in Section 7.3

that, for most of the families of subgroups we study, the CSTE model’s underlying assumption

is violated, so the CSTE model does not apply in those cases.

7.1 Multiple Testing for Subgroup Heterogeneity

Our goal is to detect for which subgroups, if any, there is evidence of HTE, i.e., we are interested

in simultaneously testing null hypotheses H0,s (s = 1, . . . ,S), where each H0,s represents the

null hypothesis of constant treatment effect within subgroup s ∈ {1, . . . ,S}. For simplicity, we

assume that the researcher defines these subgroups and we take them as given from now on.

To formally define the problem, we introduce more notation. Let Y0,s and Y1,s denote the

control and treatment outcomes for subgroup s, respectively, with corresponding CDFs F0,s(·)
6Looking at the ATEs across subgroups often cannot capture other forms of treatment effect variation beyond

the mean. Bitler, Gelbach, and Hoynes (2006) provide an in-depth account of this phenomenon. In their study,
they document how the CSTE model misses detecting the heterogeneous effects of a welfare reform as predicted
by a static labor model. For example, this economic model implies effects of opposing signs, but the ATEs
obscure this relationship by averaging them together.
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and F1,s(·).7 The QTE for subgroup s is given by

γs(τ) = F−1
1,s (τ) − F−1

0,s (τ), ∀ τ ∈ T . (18)

The individual null hypothesis H0,s for s in the family 1 ≤ s ≤ S is

H0,s : γs(τ) = γs ∀ τ, for some γs ,

where γs is the unknown subgroup-specific QTE that we need to estimate. For example, we can

estimate γs using the same ideas we discussed in Remark 1 but applied to data in subgroup s.

Using the data from each mutually exclusive subgroup, we can calculate the p-values for

each individual hypothesis H0,s—we simply apply the permutation test from Section 4.2 to

those data in subgroup s. Suppose that p̂s is the p-value for testing H0,s using the permutation

test based on K̃N applied to data belonging to subgroup s. Denote the ordered p-values as

p̂(1) ≤ · · · < p̂(S) with associated subgroup-specific ordered null hypotheses H0,(1), . . . , H0,(S).

We control for the family-wise error rate using the Holm adjustment as follows:

Step 1. If p̂(1) > α/S, do not reject H0,(1), . . . , H0,(S) and stop. If p̂(1) ≤ α/S, reject H0,(1) and

test the remaining S − 1 hypotheses at level α/(S − 1).

Step 2. If p̂(1) ≤ α/S but p̂(2) > α/(S−1), do not reject H0,(2), . . . , H0,(S) and stop. If p̂(1) ≤ α/S

and p̂(2) ≤ α/(S − 1), reject H0,(1) and H0,(2), and test the remaining S − 2 hypotheses at level

α/(S − 2).

And so on.8

The Holm step-down procedure allows us to determine for which subgroups there is evidence

of heterogeneity in the treatment effect. This follows mechanically from the way the step-down

procedure works. We further illustrate this method with the empirical analysis in Section 7.3.
7Following BGH, we test the adequacy of the CSTE model using the earnings distribution for those subjects

with participation-adjusted, positive earnings. The reason is two-fold. First, it rules out potential violations
of assumption A.1 that could render our approach inapplicable. Secondly, CSTE models with different mass
points between experimental groups trivially reject the null hypotheses H0,s or (20). For example, suppose
P (Y > 0|D = 1) = p1 and P (Y > 0|D = 0) = p0. Assume w.l.o.g. that p0 > p1 > 0, therefore the QTEs are 0
for quantiles τ∗ ≤ p1 whereas the QTEs for quantiles p1 < τ∗ ≤ p0 are generally different than 0.

8The Holm procedure only depends on the p-values of the individual tests s = 1, . . . , S without imposing
dependence assumptions among them. See Chapter 9.1.3 in Lehmann and Romano (2022) for more details.
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Remark 4. We can test the underlying assumption behind the CSTE model as a by-product

of the proposed multiple testing procedure. Indeed, the CSTE model for a family of subgroups

{1, . . . ,S} would apply as long as we fail to reject the joint null Hjoint
0 given by:

Hjoint
0 :

⋂
1≤s≤S

H0,s , (19)

where H0,s are defined as before. Observe we would reject the joint hypothesis (19) if any one

of the null hypotheses H0,s for subgroup s ∈ {1, . . . ,S} is rejected. Therefore, we reject the

joint null hypothesis (19) if p̂(1) ≤ α/S, and fail to reject otherwise (see Step 1 above). ■

Remark 5. Even though it is not our goal in this paper, we can improve upon Holm’s method

by incorporating the dependence structure of the individual tests. In our context, for example,

one could approximate the distribution of a max-type statistic, where the maximum is taken

over the mutually exclusive subgroups s = 1, . . . ,S. See Romano and Wolf (2005) for more

details. ■

Remark 6. BGH test a similar, but different set of hypotheses:

Hcdf
0,s : F1,s(y) = F0,s(y − δs) , for some δs , (20)

where δs is the subgroup-specific treatment effect that we need to estimate (e.g., we can use

γ̂s). Thus, we reject a joint hypothesis similar to (19) where the individual hypotheses H0,s

are replaced by (20). However, we argue that BGH’s heuristic justification to establish the

asymptotic validity of their test is incorrect. See the online appendix for more details. ■

7.2 Jobs First

During the 1990s, the U.S. passed a series of welfare reforms to boost employment and reduce

welfare dependency. Under the new regime, states replaced their Aid to Families with Depen-

dent Children (AFDC) programs with the Temporary Assistance for Needy Families (TANF).

In this section, we use data from Connecticut’s welfare reform, Jobs First, collected by the

Manpower Demonstration Research Corporation (MDRC) and the Connecticut Department of

Social Services. The data from this program has two important advantages for our purposes.
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First, it summarizes the main features of the welfare reforms (time limits to welfare assistance,

financial work incentives, work requirements, and sanctions). Second, nearly 5000 single-parent

families from disadvantaged backgrounds with at least one child under age 18 were randomly

assigned to the Jobs First (treatment) or to the former AFDC program (control). See Bloom

et al. (2002) for a full report on this welfare reform initiative.

As Bitler, Gelbach, and Hoynes (2006) point out, static labor supply predicts heterogeneous

responses to the reform. First, the earnings distribution will have a mass point at 0 in both

experimental groups. Second, for women with positive earnings, earnings will be greater under

the reform over some range of the earnings distribution. However, women on the higher end of

the distribution may experience a reduction or no effect on earnings as a result of the reform.

These heterogeneous responses depend on a series of baseline characteristics (prior to the

intervention). The MDRC collected data that proxy these individual characteristics, e.g., edu-

cation, earnings, welfare history, age, marital status, ages of the youngest child,9 and earnings

history. Following BGH, we used these socio-demographic characteristics’ levels and their in-

teractions to form the subgroups (see also Table 3 below).

7.3 Results

Table 3 displays the results of our empirical analyses. Each row indicates the covariate’s levels,

or interaction of covariates’ levels, giving rise to a family of subgroups. Thus, each row displays

the results of applying our permutation test for different families of subgroups. Column 2

shows the total number of subgroups within each family. With the exception of the first row,

all the subgroups consist of the interaction between quarters after random assignment and a

demographic characteristic. Therefore, one should understand each row as a family of subgroups

defined by quarter-specific covariates’ levels. For example, the second row (Education) considers

the quarterly levels of No high-school diploma, High-school diploma, and More than high-school

diploma, generating the family of 21 subgroups that we find in column 2. The first row in Table 3

(Full sample) has only seven subgroups because in that case we only look at the cross-section
9Women are eligible to receive benefits as long as their youngest child is under 18 years of age.
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of individuals for each of the seven quarters after the reform.

Columns 3 and 4 in Table 3 indicate the number of individual hypotheses H0,s that our

test rejects at 10% and 5%, respectively. Following Section 7.1, we account for multiple testing

across subgroup configurations using the Holm adjustment (for completeness, we also include

Bonferroni corrections in the online Appendix).10 Lastly, following Remark 4, column 5 displays

whether our proposed test rejects (19) at 5%.11 Thus, from a practitioner’s point of view,

column 5 indicates whether the CSTE model applies (✓) or not (✗).

Table 3: Testing for Heterogeneity in the Treatment Effect by Subgroups, Time-
varying mean treatment effects by subgroup with participation adjustment.

Number of Number of mtPermTest
Number of Rejections Rejections Rejects Hjoint

0
Subgroup Tests at 10% at 5% at 5%
Full Sample 7 4 3 ✓

Education 21 3 1 ✓

Age of youngest child 21 4 3 ✓

Marital status 21 6 2 ✓

Earnings level seventh Q pre-RA 21 0 0 ✗

Number of pre-RA Q with earnings 21 1 0 ✗

Welfare receipt seventh Q pre-RA 14 2 2 ✓

Education subgroups interacted with
Age of youngest child 49 6 5 ✓

Marital status 35 4 2 ✓

Earnings level seventh Q pre-RA 63 0 0 ✗

Number of pre-RA Q with earnings 63 2 1 ✓

Welfare receipt seventh Q pre-RA 42 1 0 ✗

Age of youngest child interacted with
Marital status 35 3 1 ✓

Earnings level seventh Q pre-RA 63 2 0 ✗

Number of pre-RA Q with earnings 49 3 1 ✓

Welfare receipt seventh Q pre-RA 42 1 0 ✗

Marital status subgroup interacted with
Earnings level seventh Q pre-RA 63 1 0 ✗

Number of pre-RA Q with earnings 63 2 0 ✗

Welfare receipt seventh Q pre-RA 42 2 1 ✓

Earnings level seventh Q pre-RA
subgroups interacted with

Number of pre-RA Q with earnings 49 2 0 ✗

Welfare receipt seventh Q pre-RA 42 1 1 ✓

Number of quarters any earnings
pre-RA subgroup interacted with

Welfare receipt seventh Q pre-RA 42 2 1 ✓

We report the results after adjusting for the multiplicity of tests within the families of subgroups using
the Holm adjustment. For the calculation of the quantile process, we consider an equally spaced grid of
quantiles τ ∈ {0.1, 0.15, . . . , 0.85, 0.9}. For the calculation of our test, we estimate the density and score
functions using the univariate adaptive kernel density estimation. The stochastic approximation of the
permutation distribution is based on 1000 permutations.

10We note that the stepwise Holm procedure can be conservative. This is so because Holm’s adjustment
does not take into account the dependence structure of the individual p-values, i.e., it assumes the worst-case
dependence structure(Romano and Wolf, 2005). See Remark 5.

11Recall that our test rejects the joint hypothesis (19) if any of the null hypotheses H0,s is rejected.
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Table 3 provides evidence against the joint null hypothesis (19) for many of the families of

subgroups in our analysis. The first seven rows in Table 3 constitute the main covariates in our

empirical analysis. As discussed by BGH, these covariates are the main drivers of heterogeneity

as predicted by the economic theory. The rest of the rows in the table are simply interactions of

the covariates in the first seven rows. For example, the first row represents the time effect of the

welfare reform (number of quarters after the reform) and gives rise to a family of 7 subgroups.

In this case, our test rejects 4 (3) of the 7 individual hypotheses H0,s at 10% (5%), so we

have evidence against the joint null hypothesis (19), as we display in column 5. Analogously,

if we consider the family of subgroups by the quarterly levels of education, we can see that

our proposed method rejects 3 (1) out of 21 individual hypotheses at the 10% (5%), so we

have evidence against (19). A similar conclusion follows if we apply our test to the families

of subgroups defined by quarterly levels of the age of the youngest child, marital status, and

welfare receipt seven quarters before the intervention (rows 3, 4, and 7 in Table 3). However,

observe that when we apply our test to the subgroups defined by the number of quarters with

earnings prior to the random assignment (row 6), we only reject one of the individual hypotheses

at 10%, so we only reject (19) at 10% but not at 5%. Lastly, we note that when we apply our

test to the family of subgroups defined by the earnings level seven months prior to the Jobs

First welfare reform, we reject none of the individual hypotheses. Therefore, in this case, we

cannot reject the joint null hypothesis (19).

The remainder of the table displays the results of our test applied to a series of quarterly

subgroups by interacting the covariates’ levels for the baseline characteristics of interest. It is

not surprising that the number of subgroups increases with the number of interactions, yielding

in some cases families with 63 subgroups (e.g., seven quarters by three earnings levels by three

education levels). However, the general conclusion is qualitatively the same as before, i.e., we

reject the joint hypothesis (19).

Table 3 has another important implication for practitioners. By rejecting (19) for many

of the families of subgroups we consider, our permutation test shows strong evidence of a

systematic violation of the fundamental assumption behind the CSTE model for many of the
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families of subgroups under consideration. Therefore, despite its appeal, one should be more

careful when applying the CSTE model to investigating treatment effect variation.

8 Conclusions

The permutation test we introduced here provides a means of conducting asymptotically valid

inference for HTE using QTE. Our test procedure relies on a modified version of the quantile

process to handle the Durbin problem. Numerical evidence in this paper indicates that our per-

mutation test outperforms the alternative quantile-based test. We provide easy-to-implement

free software and discuss its fast implementation using the preprocessing algorithm.

On the empirical side, we illustrate our test using experimental data from Connecticut’s

Jobs First. In this application, we challenge a common practice in empirical work that seeks to

investigate treatment effect variation by estimating ATEs across subgroups defined by covari-

ates’ levels. Our empirical findings provide evidence against the underlying assumption behind

this practice, limiting its applicability in such cases.
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