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We organize this online appendix as follows. Section I contains the proofs of Lemmas 1

and 2. These lemmas establish the asymptotic null behavior of the 2SKSQ and the

Khmaladze transformed 2SKSQ, respectively. In Section II, we describe Bitler, Gelbach,

and Hoynes’s (2017, BGH ) simulated outcomes approach in more detail. We emphasize

how their approach is not immune to the Durbin problem and what is the source of the

problem. Even though their heuristic approach to the Durbin problem yields to a correct

conclusion (inadequacy of the CSTE model), we argue the theoretical reasoning behind

the simulated outcomes approach does not formally address the problem and, therefore,

we cannot claim the asymptotic validity of their permutation test. The second part of

this appendix, Section III, contains the results of BGH’s empirical exercise. We include

them here verbatim to highlight how their results are qualitatively the same as ours,

despite the presence of an estimated nuisance parameter.
†The second author acknowledges support from the European Research Council (Starting Grant No.

852332). We are grateful to MDRC for granting access to the experimental data we use in this paper.
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I Proofs of Lemmas

I.1 Proof of Lemma 1

We are interested in showing the asymptotic behavior of the test statistic under the null

hypothesis. We begin by rewriting (6) as

υ̂N(τ ; Z) =
√
mn

N
φ̂(τ) {γ̂(τ) − γ(τ)} −

√
mn

N
φ̂(τ) {γ̂ − γ} +

√
mn

N
φ̂(τ) {γ(τ) − γ} .

(I.1)

where the last term in (I.1) is zero under the null hypothesis. Develop further to obtain

υ̂N(τ ; Z) =
√
mn

N
φ(τ) {γ̂(τ) − γ(τ)} −

√
mn

N
φ(τ) {γ̂ − γ}

+
√
mn

N
[φ̂(τ) − φ(τ)] {γ̂(τ) − γ(τ)} −

√
mn

N
[φ̂(τ) − φ(τ)] {γ̂ − γ}

=
√
mn

N
φ(τ) {γ̂(τ) − γ(τ)} −

√
mn

N
φ(τ) {γ̂ − γ} + op(1)

= υN(τ ; Z) + ξN(τ ; Z) + op(1) , (I.2)

where the op(1) term holds uniformly over T by Assumption A.3 (ii). Under Assumptions

A.1 and A.2, {υN(τ ; Z) : τ ∈ T } converges weakly in ℓ∞(T ) to a Brownian bridge process

υ(·) by Shorack and Wellner (2009, Theorem 2, Ch. 18).

By Assumption A.3 (i), the second term on the right-hand side of (I.2) is in ℓ∞(T )

if and only if supT |φ(τ)| < ∞. But this follows by A.1, which implies F0 is Lips-

chitz continuous and therefore supT |φ(τ)| < ∞. Therefore, {ξN(τ ; Z) : τ ∈ T } con-

verges weakly in ℓ∞(T ) to a mean zero Gaussian process ξ(·) with covariance function

C(ξ(τ1), ξ(τ2)) = φ(τ1)φ(τ2)σ2
0. Thus, the limit process υ(·) + ξ(·) is a Gaussian process

with zero mean and covariance function

C(υ(τ1), ξ(τ2)) = min{τ1, τ2} − τ1τ2 + φ(τ1)φ(τ2)σ2
0

+ τ1(1 − τ1)φ(τ2){E(Y0|Y0 ≤ F−1
0 (τ2)) − E(Y0|Y0 > F−1

0 (τ2))} . (I.3)
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This finishes the first part of the proof. Note that the maps v → ∥v∥ from ℓ∞(T ) into

R are continuous with respect to the supremum norm. Then, a direct application of the

continuous mapping theorem (CMT) yields the final result. This finishes the proof.

I.2 Proof of Lemma 2

Recall the martingale-transformation of the quantile process (13) is given by

υ̃N(τ ; Z) = υ̂N(τ ; Z) − ψg (υ̂N) (τ ; Z)

= υN(τ ; Z) + φ(τ)ξN(Z) − ψg (υ̂N) (τ ; Z) + op(1) , (I.4)

where the second equality follows by the asymptotic expansion (I.2) and the op(1) term

holds uniformly over T . By properties of the compensator ψg and (I.2), we have that

ψg (υ̂N) (τ ; Z) = ψg (υN) (τ ; Z) + φ(τ)ξN(Z) + op(1) . (I.5)

Plugging (I.5) into (I.4) yields

υ̃N(τ ; Z) = υN(τ ; Z) − ψg (υN) (τ ; Z) + op(1) , (I.6)

and therefore, {υ̃N(τ ; Z) : τ ∈ T } converges weakly to ζ(·), the standard Brownian

motion by Khmaladze (1981, 4.3). This finishes the proof of the fist part of the lemma.

A direct application of the CMT as in the proof of Lemma 1 finishes the proof.

II BGH and The Durbin Problem

BGH apply a Fisher-randomization test using the plug-in method for the individual hy-

potheses (19) (Bitler, Gelbach, and Hoynes, 2017, Section V.B, p. 694). To formalize

the ongoing discussion, we need more notation. Let the observed data for each mutually

exclusive subgroup be given by Zs =
(
Zs

1 . . . , Z
s
Ns

)
=

(
Y 1

s,1, . . . , Y
1

s,ms
, Y 0

s,1, . . . , Y
0

s,ns

)
for
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all 1 ≤ s ≤ S, where every subgroup Zs has Ns = ms + ns observations.

Under the assumptions of the CSTE model, Y1,s = Y0,s + δs for all s. Then, one

might shift the observations in the control group, Y0,s, by adding these subgroup-specific

δs, that we can estimate as the ATEs within subgroup s, to the actual outcome. Let

Ŷ0,s = Y0,s + δ̂s be the simulated outcomes within subgroup s. This simple transformation

across subgroups yields a simulated outcome under treatment, {Ŷ0,s : 1 ≤ s ≤ S}.

BGH argue that if the CSTE model is a good representation of HTE, then the distribu-

tion of the simulated outcomes should be “close” in some sense to F1,s(·), the distribution

of the observed outcomes under treatment. Therefore, BGH’s permutation test is based

on the two-sample Kolmogorov–Smirnov test statistic (2SKS) for each subgroup,

Ks
N,δ̂

(Zs) = sup
y∈R

∣∣∣V s
N (y, δ̂s; Zs)

∣∣∣ , (II.1)

where

V s
N (y, δ̂s; Zs) =

√
msns

Ns

{
F̂1,s(y) − F̂0,s(y − δ̂s)

}
. (II.2)

From the previous test statistic, one can define BGH’s permutation test as follows.

Let Gs be the set of all permutations π of {1, . . . , Ns}. For a fixed subgroup s, BGH’s

permutation test based on 2SKS rejects the individual hypothesis (19) if the observed (II.1)

exceeds the 1 − α/S quantile of the permutation distribution:

R̂K(δ̂)
N,s (t) = 1

Ns!
∑

π∈Gs

1{
Ks

N,δ̂

(
Zs

π(1),...,Zs
π(Ns)

)
≤t

} . (II.3)

II.1 Commentary on BGH’s Approach

BGH state that the critical values derived from (II.3) are asymptotically valid even in the

presence of estimated parameters (Section V, p. 694). However, this claim is false. To

establish the asymptotic validity of the permutation test, we need to show that the per-
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mutation distribution (II.3) approximates the true unconditional sampling distribution

of (II.1). Under relatively weak assumptions, we can show that (II.3) behaves like the dis-

tribution of (the supremum of) a Brownian bridge (Chung and Olivares, 2021, Theorem

2). In contrast, the limiting distribution of the 2SKS is given by the distribution of (the

supremum of) a different Gaussian process; it has mean 0 and a covariance structure that

depends on unknown parameters as proved in Ding, Feller, and Miratrix (2016, Theorem

4). Therefore, the permutation test based on the 2SKS fails to control the type 1 error

asymptotically.

Then, how do we make sense of BGH’s claims? The authors’ justification relies on

a result by Præstgaard (1995) that states the permutation empirical process converges

weakly to a Brownian bridge corresponding to a mixture measure. Indeed, the testing

problem in BGH’s environment satisfies the premises in Præstgaard’s (1995), so (II.3)

asymptotically does behave like the process in Præstgaard (1995).

In other words, the asymptotic behavior of the permutation distribution (II.3) does

not change when the estimated δs enter the test statistic instead of the known value δs.

However, it is not the case for the true unconditional limiting distribution of the test

statistic. The asymptotic behavior of the 2SKS statistic does change in the presence of

estimated parameters. Therefore, the permutation distribution does not mimic the true

unconditional distribution of the test statistic in large samples when δs is being estimated,

invalidating BGH’s permutation test. Will BGH’s approach ever be valid? Yes, but only

in the infeasible scenario when we know the subgroup-specific δs. In fact, in this case, the

permutation test achieves the finite sample exactness. Therefore, BGH’s claim that their

method yields asymptotically valid inference is only well-grounded in this extraordinary

case and incorrect otherwise.

III Empirical Results from BGH

Table 1 displays the results from BGH empirical analysis and the proposed permutation

test based on the quantile process in Section 4.2. Columns 3–4 contain the empirical
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results from BGH’s Table 2, which we include verbatim for a fair comparison. Meanwhile,

columns 5–6 contain the results from our proposed method. We note that a joint test of

the family of null hypotheses across these subgroups rejects if we reject any one of the

subgroup-specific null hypotheses (see BGH’s Section V).

Table 1: Testing for Heterogeneity in the Treatment Effect by Subgroups, Time-varying
mean treatment effects by subgroup with participation adjustment

BGH’s Permutation Test Asymptotically Valid
Permutation Test

Number of Number of Number of Number of
Number of Reject Reject Reject Reject

Subgroup Tests at 10% at 5% at 10% at 5%
Full Sample 7 4 4 3 3
Education 21 3 1 3 1
Age of youngest child 21 3 1 3 3
Marital status 21 2 1 3 2
Earnings level seventh Q pre-RA 21 2 1 0 0
Number of pre-RA Q with earnings 21 1 0 1 0
Welfare receipt seventh Q pre-RA 14 3 3 2 2
Education subgroups interacted with

Age of youngest child 49 1 0 6 5
Marital status 35 3 3 4 2
Earnings level seventh Q pre-RA 63 1 0 0 0
Number of pre-RA Q with earnings 63 0 0 2 1
Welfare receipt seventh Q pre-RA 42 1 0 1 0

Age of youngest child interacted with
Marital status 35 1 1 3 1
Earnings level seventh Q pre-RA 63 0 0 1 0
Number of pre-RA Q with earnings 49 1 1 3 1
Welfare receipt seventh Q pre-RA 42 1 0 1 0

Marital status subgroup interacted with
Earnings level seventh Q pre-RA 63 2 1 1 0
Number of pre-RA Q with earnings 63 0 0 2 0
Welfare receipt seventh Q pre-RA 42 1 0 2 1

Earnings level seventh Q pre-RA
subgroups interacted with

Number of pre-RA Q with earnings 49 0 0 2 0
Welfare receipt seventh Q pre-RA 42 1 1 1 1

Number of quarters any earnings
pre-RA subgroup interacted with

Welfare receipt seventh Q pre-RA 42 0 0 2 1
All reported results account for multiple testing using Bonferroni adjustment. We use 1000 permutations for the
stochastic approximation of the permutation distribution.
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