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Abstract

Though stratified randomization achieves more balance on baseline covariates than
pure randomization, it does affect the way we conduct inference. This paper consid-
ers the classical two-sample goodness-of-fit testing problem in randomized controlled tri-
als (RCTs) when the researcher employs a particular type of stratified randomization—
covariate-adaptive randomization (CAR). When testing the null hypothesis of equality of
distributions between experimental groups in this setup, we first show that stratification
leaves a mark on the test statistic’s limit distribution, making it difficult, if not impossi-
ble, to obtain critical values. We instead propose an alternative approach to conducting
inference based on a permutation test that i) is asymptotically exact in the sense that
the limiting rejection probability under the null hypothesis equals the nominal α level, ii)
is applicable under relatively weak assumptions commonly satisfied in practice, and iii)
works for randomization schemes that are popular among empirically oriented researchers,
such as stratified permuted block randomization.

The proposed test’s main idea is that by transforming the original statistic by one mi-
nus its bootstrap p-value, it becomes asymptotically uniformly distributed on [0, 1]. Thus,
the transformed test statistic—also called prepivoted—has a fixed limit distribution that is
free of unknown parameters, effectively removing the effect of stratification. Consequently,
a permutation test based on the prepivoted statistic produces a test whose limiting re-
jection probability equals the nominal level. We present further numerical evidence of
the proposed test’s advantages in a Monte Carlo exercise, showing our permutation test
outperforms the existing alternatives. We illustrate our method’s empirical relevance by
revisiting a field experiment by Butler and Broockman (2011) on the effect of race on
state legislators’ responsiveness to help their constituents register to vote during elections
in the United States. Lastly, we provide the companion RATest R package to facilitate
and encourage applying our test in empirical research.
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1 Introduction

Consider first the most straightforward way a researcher carries out randomization in a con-
trolled experiment—simple randomization. In this experimental design, every individual is as
likely to be assigned to the treatment or control group. While simple randomization takes care
of selection bias, it does not guard the researcher against imbalances over baseline covariates,
which may result in loss of statistical efficiency or low estimation precision, even if these im-
balances occur purely by chance (Imbens and Rubin, 2015, Chapter 9). This problem further
worsens when sample sizes are small or the number of covariates to balance over increases.

In such circumstances, covariate-adaptive randomization (CAR) is a popular randomization
technique that exploits observable characteristics—such as geographic, demographic, or other
factors before random assignment—to inform the treatment and achieve balance. This form of
stratified randomization is reasonably easy to implement and improves upon simple randomiza-
tion, primarily if the baseline covariates are correlated with the outcome of interest. In essence,
CAR consists of two steps—first, define strata as different combinations of covariate levels,
and then assign treatment to achieve balance within each stratum. Thus, CAR techniques are
relevant in the experimental design, and this fact explains their popularity among empirically
oriented researchers.1

This paper presents theoretical, empirical, and simulation evidence showing that when test-
ing the null hypothesis of equality of distributions, balancing over covariates using CAR tech-
niques has a detrimental effect on inference. In particular, our first result shows that stratifica-
tion leaves a mark on the distribution of the classical two-sample Kolmogorov–Smirnov (2SKS)
test statistic, making it difficult, if not impossible, to obtain critical values. The complexity
attributed to stratification may lead to severe size distortions if we use the asymptotic null dis-
tribution’s critical values obtained under simple randomization. Indeed, we present simulation
results showing that the limiting rejection probability of the 2SKS test can be substantially
below its nominal level.

One might wonder whether we can use permutation-based critical values instead of asymp-
totic ones to bypass the 2SKS test’s size distortions, especially because randomization comes
from random treatment assignment, making intuitive sense to consider randomization infer-
ence for testing. First, we argue that permutation inference based on the 2SKS statistic is
not immune to stratification’s adverse effects, i.e., the permutation test that does not account
for CAR fails to control the type 1 error rate, even in large samples. Next, to demonstrate
the quantitative importance of this phenomenon, we present simulation evidence showing that

1Bruhn and McKenzie (2009) present a comprehensive review of how these methods are used in development
economics. See also Duflo and Banerjee (2017), Bai (2019), and the references therein for a more recent count of
these techniques in economics. More broadly, Hu et al. (2014) examine a large class of CAR schemes in clinical
trials.
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the permutation test based on the 2SKS statistic is not a reliable procedure for the testing
problem of interest—the empirical rejection probabilities under the null hypothesis are shock-
ingly different from the nominal level. Consequently, applying conventional testing procedures
based on simple randomization may lead to invalid results when the randomization scheme is
covariate-adaptive.

To overcome this problem, we introduce a novel permutation test for the aforementioned
null hypothesis under CAR. As we will explain below, our proposed test’s main idea is that
by transforming the 2SKS statistic by its bootstrap cumulative distribution function (CDF), it
becomes asymptotically uniformly distributed on [0, 1]. Thus, the new test statistic—also called
prepivoted (Beran, 1987)—has a fixed limit distribution that is free of unknown parameters,
effectively removing the effect of stratification. Our main result shows that the permutation
test based on the prepivoted statistic will have rejection probability that tends to α for testing
equality of distributions under CAR.

Since prepivoting offers an alternative way of rendering test statistics that do not depend on
the fundamentals, recent studies exploit this idea to restore the permutation tests’ asymptotic
validity. The theory developed in Chung and Romano (2016) appears particularly attractive
when comparing equality of means of multidimensional observations based on a modified max-
imum statistic. More recently, Cohen and Fogarty (2020) propose a unified framework to
conduct permutation-based inference for Neyman’s weak null hypothesis for a large class of
test statistics—like the difference-in-means statistic or the absolute difference-in-means—based
on Gaussian prepivoting. Our paper describes further steps in this direction by extending this
idea to testing problems concerning the entire distributions, not only some aspects of them like
their means.2

It is essential to realize that, in order to apply the prepivoting method, one must establish
the consistency of the bootstrap under CAR. This paper proposes an exchangeable bootstrap
approach to estimating the 2SKS statistic’s asymptotic null distribution under CAR. Since the
conditions we provide allow for several choices of weights for the bootstrap approximation, we
carry out the Bayesian bootstrap (Rubin, 1981). Besides the desired consistency property, our
bootstrap procedure has the practical advantage that the researcher does not need to know the
control variables that give rise to strata. This advantage becomes meaningful in field experi-
ments where ethical considerations play a central role. For example, field experiments frequently
hide pre-treatment characteristics to fulfill their IRB commitments to keep the subjects in the
experiment anonymous, thus ensuring minimal risk (Duflo and Banerjee, 2017, Chapter 5).

2We can find permutation tests based on modified test statistics that do not depend on the fundamentals,
like prepivoting here, in other contexts. Notable examples include the pioneering works of Neuhaus (1993) and
Janssen (1997, 1999). More recently, Chung and Romano (2013, 2016) generalize this principle to handle general
finite-dimensional testing problems, whereas Chung and Olivares (2020) consider a modified test statistic for
the classical goodness-of-fit testing problem with an estimated nuisance parameter.
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To better understand our method and show its empirical relevance, we present a reappraisal
of the field experiment by Butler and Broockman (2011) about the effect of race on state legis-
lators’ responsiveness to help their constituents register to vote during the 2008 U.S. elections.
Based on our permutation test, we find empirical evidence suggesting that legislators show more
responsiveness to those constituents who, based on their race, are inferred to be of the same
party. However, the response rates to each racial alias are indistinguishable once we signal the
constituent’s partisanship, thus complementing the results in Butler and Broockman (2011).
We accompany our analysis with the RATest R package—available on CRAN—to ease and
encourage the application of our test in empirical research.

Previous research has realized and discussed the consequences of CAR techniques on the
way we conduct inference.3 The seminal works of Birkett (1985) and Forsythe (1987) document
that the simple two-sample t-test (2StT) is conservative under CAR via Monte Carlo simulation,
raising concerns about its validity if adaptive randomization is present. Shao, Yu, and Zhong
(2010) formalize the statistical properties of the 2StT under CAR, sparking an increasing body
of research seeking to understand this phenomenon for a large class of CAR techniques and
experimental designs. Along this line, Ma, Hu, and Zhang (2015); Ye (2018); Ma et al. (2020)
study t and Wald tests’ theoretical properties under CAR schemes and propose corrections
based on the asymptotic critical values. Bugni, Canay, and Shaikh (2018, 2019) extend this
approach to linear regression with strata fixed effects models and multiple treatments. Bai
(2019) shows that matched-paired designs—a type of CAR scheme with only two units per
stratum—is optimal among all stratified randomization designs in the sense of minimizing the
difference-in-means estimator’s (second moment of the) ex-post bias. Other extensions include
survival models (Ye, Yi, and Shao, 2020), adaptive randomization in network data (Zhou,
Li, and Hu, 2020), quantile regression Zhang and Zheng (2020), and randomization inference
(Simon and Simon, 2011; Bugni, Canay, and Shaikh, 2018).

However, except for Zhang and Zheng (2020), all the papers above only consider making
inference about low-dimensional parameters, whether it is the average treatment effect or the
slope coefficients in a regression model. Unlike these methods, we revisit the classical goodness-
of-fit testing problem, i.e., in our testing problem, the parameter of interest is the entire outcome
distributions rather than one aspect of them, such as their mean. Thus, our testing problem
posits two significant challenges. First, even though we can characterize the interconnection
between the randomization scheme and inference, our test statistic’s limit distribution depends

3We focus on CAR only, but alternative randomization schemes and their potential effects on statistical
inference are also present in literature. Notable examples include the pioneering works of Begg and Iglewicz
(1980); Atkinson (1982); Smith (1984a,b) on model-based randomization for estimation efficiency, and more
recently Baldi Antognini and Zagoraiou (2011). Zhang et al. (2007); Hu and Rosenberger (2006); Rosenberger
and Sverdlov (2008); Hu, Zhang, and He (2009) introduce adaptive randomization techniques based on out-
comes in addition to covariates. Re-randomization is considered in Morgan and Rubin (2012); Kuznetsova and
Tymofyeyev (2013); Basse and Airoldi (2018); Cohen and Fogarty (2020). Alternatively, Bertsimas, Johnson,
and Kallus (2015) provides an approach based on optimization as opposed to randomization.
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on the fundamentals and stratification, making it difficult, if not impossible, to obtain critical
values. Second, and more importantly, one cannot restore our test procedures’ validity by
simple studentization, as in the 2StT case, e.g. Bugni, Canay, and Shaikh (2018). In this paper,
we propose a new approach to sidestep these difficulties based on the prepivoting idea of Beran
(1987, 1988).

The layout of the article is organized as follows. In the next section, we introduce the statis-
tical environment, notation, and the statistical problem at hand. We study the adverse effects
of stratification on how we conduct inference via the classical 2SKS and permutation tests in
Section 3. The same section shows how these testing procedures fail to control the type 1 error,
even asymptotically. Section 4 introduces our permutation test and establishes this paper’s
main results under general conditions to address this difficulty. Under weak assumptions, we
show that the permutation test based on the prepivoted statistic has limiting rejection proba-
bility under the null hypothesis equal to the nominal level. Section 5 contains some simulation
results, and we dedicate Section 6 to the empirical illustration. Finally, a summary of this
paper’s contributions and conclusions are collected in Section 7. Appendices A–D contain the
proofs, auxiliary lemmas, and additional material.

2 Statistical Environment

2.1 Setup and Notation

We consider the standard randomized experiment setup, where Y denotes the (continuous)
outcome of interest, and Z is a vector of pre-treatment covariates. Let A be a treatment
indicator such that A = 1 if the experimental unit receives treatment, and A = 0 otherwise.
Define Y (1) as the potential outcome if the experimental unit belongs to the treatment group,
and Y (0) if it belongs to the control group. The following rule determines the observed outcomes

Y = Y (0) + (Y (1)− Y (0))Ai .

Throughout the paper, we maintain the following assumption about the data available to the
researcher. This assumption is standard in the type of econometric applications we have in
mind:

A. 1. The data are an independent and identically distributed sample {(Yi, Ai, Zi) : 1 ≤ i ≤ N}
from the distribution of (Y,A, Z), denoted Q.

To show how exactly CAR works, it is useful to introduce the stratification rule as a function
of baseline covariates. Let S : supp(Z) → S be a discrete function that generates the strata,
with p(s) = P{S = s} > 0 for all s ∈ S .
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Remark 1. Some authors separate the elements in Z into two subsets, one that the researcher
uses to inform the treatment and another subset as part of the working model (Shao, Yu, and
Zhong, 2010; Ma, Hu, and Zhang, 2015; Ma et al., 2020). If the researcher uses the elements
in Z that are part of the randomization in the test’s construction, then a correctly specified
model between Y and those covariates is required to construct a valid test. We make no such
distinction. �

If Z consists of p baseline covariates, and each covariate has sj levels, j = 1, . . . , p, the
total number of strata is |S | = ∏p

j=1 sj < ∞. For every experimental unit 1 ≤ i ≤ N , we
generate Ai after we observe Zi. Collect the treatment indicators and strata, respectively, into
Ak = (A1, . . . , Ak) ∈ {0, 1}k and Sk = (S1, . . . , Sk) ∈ S k for 1 ≤ k ≤ N , where Si = S(Zi).
Denote Y1,i = Yi among the treated, and Y0,i = Yi among the non-treated, and collect all these
outcomes in one vector as X = (Y1,1, . . . , Y1,m, Y0,1, . . . , Y0,n) = (X1, . . . , XN).

Remark 2. Stratification through a discrete function S is a common feature of covariate-
adaptive designs, where the researcher typically categorizes continuous covariates to form strata,
e.g., Shao, Yu, and Zhong (2010); Ma, Hu, and Zhang (2015); Bugni, Canay, and Shaikh (2018,
2019). However, discretizing continuous covariates comes at the expense of losing information
and the additional effort to define the categories judiciously. This problematic has led to new
CAR schemes that achieve balance without breaking continuous covariates down into categories.
See Hu et al. (2014)—and references therein—for a thorough review of the literature in this
regard. �

Consider the following device:

DN(s) =
N∑
i=1

(Ai − λ)1{Si=s} , s ∈ S , λ ∈ (0, 1) . (1)

The previous function measures the within-stratum degree of imbalance for a pre-specified frac-
tion λ.4 Typically λ = 1/2, meaning that the research design allocates half of the subjects to
the treatment group in every stratum. Thus, DN(s) > 0 means that there are more subjects
in the treatment group relative to the control group, and analogously if DN(s) < 0. Through-
out this paper, we assume λ is the same regardless of the stratum though we can relax this
requirement and allow for different target proportions for different strata, e.g. Bugni, Canay,
and Shaikh (2019) or Ye, Yi, and Shao (2020).

For s ∈ S , let m(s) = |{1 ≤ i ≤ N : Ai = 1, Si = s}| and similarly n(s) with Ai = 0
4 There are different measures of imbalance besides the one we consider here. For example the overall

imbalance measure, DN =
∑N

i=1 (Ai − λ), or the marginal imbalance of Pocock and Simon (1975). Different
measures of imbalance give rise to different CAR designs. For example, Hu and Hu (2012) procedure minimizes
the weighted average of overall, within-stratum, and marginal imbalance, whereas the model-based approach in
Smith (1984a) defines imbalance to achieve optimality results. See Rosenberger and Lachin (2015) for a review.
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replacing Ai = 1. We now discuss an additional assumption about the treatment mechanism

A. 2. The treatment assignment mechanism is such that:

i)
{

(Yi(1), Yi(0), Zi) : 1 ≤ i ≤ N
}
⊥⊥ AN |SN .

ii) {{
DN(s)√

N

}
s∈S

∣∣∣∣∣SN
}

d→ N (0,ΣD)

where ΣD = diag { p(s) τ(s) : s ∈ S } with 0 ≤ τ(s) ≤ λ(1− λ) for all s ∈ S .

Assumption A.2 is Bugni, Canay, and Shaikh (2019, Assumption 2.2). The first part of
this assumption asserts that, while the treatment assignments and the observed outcomes are
dependent, treatment assignments do not affect the potential outcomes, conditionally on strata.
Moreover, given strata, Z may contain covariates not used for CAR, so we do not have to specify
a model between observed outcomes and these additional covariates (see Remark 1).

The idea behind Assumption A.2 ii) is that, conditionally on strata, the fraction of units in
the treatment group concentrates around the target proportion λ across strata as the sample
increases. This condition holds for the most commonly used CAR schemes, such as stratified
permuted block randomization (Fisher, 1934; Zelen, 1974), covariate-adaptive biased coin design
(Efron, 1971; Baldi Antognini and Zagoraiou, 2011), and covariate-adaptive urn design (Wei,
1978; Baldi Antognini and Giovagnoli, 2004). See Baldi Antognini and Zagoraiou (2015) and
Lemmas B.11–B.13 in Bugni, Canay, and Shaikh (2018) for more details.

Assumption A.2 can be either strengthen or weaken, depending on the nature of the treat-
ment assignment mechanism and the experimental design. In the former case, we can replace
A.2 ii) with the more restrictive DN(s) = op(N(s)1/2). In the latter, one can weaken it by
instead considering DN(s) = op(N(s)) for every s ∈ S , where N(s) = m(s) +n(s), e.g. Bugni,
Canay, and Shaikh (2019); Zhang and Zheng (2020). We stick to our formulation because it i)
covers the most common CAR schemes—certainly the ones in this paper—and ii) simplifies the
asymptotic theory.

Remark 3. Alternatively, one may consider probability bounds for the overall and marginal
imbalances (see footnote 4) and derive the asymptotic properties for Wald tests under sequential
randomization algorithms (Hu and Hu, 2012) and the marginal procedures in Pocock and Simon
(1975). See Corollary 3.1 and Theorem 3.3 in Ma, Hu, and Zhang (2015). Lastly, we can sidestep
discretization and work with continuous covariates directly by assuming

N−1/2
N∑
i=1

(2Ai − 1)Zi d→ ξ ,

where ξ is a p-dimensional random vector with E(ξ) = 0. This last condition applies to CAR
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designs that deal with continuous covariates, such as simple randomization, re-randomization
(Morgan and Rubin, 2012), pair-wise sequential randomization (Qin et al., 2018), and Atkin-
son’s DA-biased coin design (Atkinson, 1982), thus encompassing a large class of model-based
randomization methods that attain certain optimality criteria (e.g. Smith, 1984b,a; Baldi An-
tognini and Zagoraiou, 2011). �

2.2 Testing Problem

Let F1(·) and F0(·) denote the distribution functions of random variables Y (1) and Y (0),
respectively. We wish to test the hypothesis

H0 : F1 = F0 vs H1 : F1 6= F0 . (2)

One possible candidate for a test statistic for hypothesis (2) is the 2SKS test statistic. To fix
notation, consider the empirical counterparts of F1 and F0 and denote

F̂1(y) = 1
m

N∑
i=1

1{Yi≤y}Ai = 1
m

m∑
i=1

1{Xi≤y} and F̂0(y) = 1
n

N∑
i=1

1{Yi≤y}(1−Ai) = 1
n

N∑
j=m+1

1{Xj≤y} ,

as the empirical CDF of treatment and control groups, respectively. Thus, the 2SKS statistic is
given by

Km,n(X) = sup
y
|Vm,n(y;X)| , (3)

where

Vm,n(y;X) =
√
mn

N

(
F̂1(y)− F̂0(y)

)
(4)

is the classical two-sample empirical process

2.3 Construction of a Permutation Test

Before turning to the theoretical results, we first illustrate the construction of a permutation
tests to asses H0 in (2). To define the test, we introduce further notation. Define GN as the
set of all permutations π of {1, . . . , N}, with |GN | = N !. Given X = x, recompute Km,n(x)
for all permutations π ∈ GN and denote by K(1)

m,n(x) ≤ K(2)
m,n(x) ≤ · · · ≤ K(N !)

m,n (x) the ordered
values of {Km,n(xπ) : π ∈ GN}, where xπ denotes the action of π ∈ GN on x.
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Let k = N !− bN !αc and define

M+(x) =
∣∣∣{1 ≤ j ≤ N ! : K(j)

m,n(x) > K(k)
m,n(x)}

∣∣∣
M0(x) =

∣∣∣{1 ≤ j ≤ N ! : K(j)
m,n(x) = K(k)

m,n(x)}
∣∣∣ .

Using this notation, the permutation test is given by

φ(x) =


1 Km,n(x) > K(k)

m,n(x)

a(x) Km,n(x) = K(k)
m,n(x)

0 Km,n(x) < K(k)
m,n(x)

, where a(x) = N !α−M+(x)
M0(x) . (5)

Alternatively, the permutation test rejects H0 in (2) if Km,n(x) exceeds the upper α quantile
of the permutation distribution:

R̂K
m,n(t) = 1

N !
∑
π∈GN

1{Km,n(xπ(1),...,xπ(N))≤t} . (6)

We can interpret the permutation distribution as the conditional distribution of Km,n(Xπ) given
X, where π is a random permutation uniformly distributed over GN , andXπ = (Xπ(1), . . . , Xπ(N)).
To see why, we observe that Km,n(Xπ) and Km,n(Xπ′) are equally likely for any π, π′ ∈ GN ,
conditionally on X (Lehmann and Romano, 2005, Theorem 15.2.2).

Remark 4. The above construction of the permutation test can be computationally burden-
some for moderately large N , which is typically the case in practice. In these scenarios, we
may alternatively rely on a stochastic approximation without affecting the permutation test’s
theoretical properties by sampling permutations π from GN with or without replacement. More
formally, let ĜN = {π1, . . . , πM}, where π1 is the identity permutation and π2, . . . , πM are i.i.d.
uniform on GN . The same construction follows if we replace GN with ĜN , and the approxi-
mation is arbitrarily close for M sufficiently large (Romano, 1989, Section 4). From now on we
focus on GN while in practice we fall back on ĜN . See also Algorithm 1 in Section 4.3. �

3 The Adverse Effects of Stratification on Inference

We now demonstrate that when testing the null hypothesis of equality of distributions, balanc-
ing over covariates using CAR techniques has a detrimental effect on inference. This section’s
main result is that the asymptotic distribution of the 2SKS statistic depends on stratification,
making it difficult, if not impossible, to obtain valid critical values. Moreover, we show that
permutation-based inference is not exempt from this effect. Thus, naively relying on a permu-
tation test that is incompatible with adaptive randomization to conduct inference can lead to
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severe size distortions, and is therefore invalid, even in large samples.

3.1 Asymptotic Results under CAR

We begin by investigating the effects of CAR on the asymptotic behavior of the 2SKS test
statistic. We introduce the following notations. Let

C1(y1, y2) = λ(1− λ){F0(y1 ∧ y2)− F0(y1)F0(y2)} , (7)

where a ∧ b = min{a, b}. Let G2 and G3 be two Gaussian processes with mean zero and
respective covariance structures given by

C2(y1, y2) =
∑
s∈S

p(s) τ(s)
(

(1− λ)2 E (m1(y1, Zi)|S1 = s)E (m1(y2, Zi)|S1 = s)

+ λ(1− λ)E (m1(y1, Zi)|S1 = s)E (m0(y2, Zi)|S1 = s)

+ λ(1− λ)E (m1(y2, Zi)|S1 = s)E (m0(y1, Zi)|S1 = s)

+ λ2 E (m0(y1, Zi)|S1 = s)E (m0(y2, Zi)|S1 = s)
)
, (8)

and

C3(y1, y2) = λ2(1− λ)2 ∑
s∈S

p(s)
(
E[m1(y1, Z)|S = s]E[m1(y2, Z)|S = s] (9)

+ E[m0(y1, Z)|S = s]E[m0(y2, Z)|S = s]− 2E[m1(y1, Z)|S = s]E[m0(y2, Z)|S = s]
)
,

where for each s ∈ S and a ∈ {0, 1}, ma(y, Z) = Fa(y|Z)− Fa(y).

The following theorem describes the behavior of the 2SKS test statistic for treatment as-
signment mechanisms satisfying assumption A.2.

Theorem 1. Suppose the distribution of the data satisfies assumption A.1 and that the treat-
ment assignment is such that assumption A.2 holds. Then the two-sample empirical process
{Vm,n(y,X) : y ∈ R} converges weakly under the null hypothesis to H(·). Here H is a tight
Gaussian process with mean zero and covariance structure

C(H(y1),H(y2)) = 1
λ(1− λ)

(
C1(y1, y2) + C2(y1, y2) + C3(y1, y2

)
. (10)

Furthermore, under the null hypothesis, Km,n converges in distribution to K = supy|H(y)| with
CDF J(·, F1, F0) given by

J(t, F1, F0) = PF1,F0

{
K ≤ t

}
.
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It is instructive to compare the key features of Theorem 1 with the particular case when
covariates play no role in randomization. In simple randomized designs, the process Vm,n(·)
converges weakly to G1, an F0–Brownian bridge process under the null hypothesis (Van der
Vaart and Wellner, 1996, Theorem 3.7.1). However, under the general assumptions on the
treatment assignment mechanisms in Theorem 1, the asymptotic distribution of the process
Vm,n(·) is no longer the Brownian bridge but rather a different Gaussian process. Indeed,
we show in Appendix A that we can write the process H as the sum of three independent
components

H(y) = G1(y)︸ ︷︷ ︸
standard

+ G2(y) + G3(y)︸ ︷︷ ︸
shift due to stratification

.

We note that the first summand is the standard F0–Brownian bridge process. However, the
remaining terms in the preceding expression are generally different than 0, yielding a more
complicated covariance structure (10). Thus, stratification leaves a mark on the asymptotic null
distribution of the two-sample empirical process—the new asymptotic null distribution depends
on the nature of the data generating process and the treatment assignment mechanism. We
synthesize the ongoing discussion in the following corollary.

Corollary 1. Under simple randomization, but otherwise under the conditions of Theorem 1,
the covariance structure in (10) reduces to F0(y1 ∧ y2)− F0(y1)F0(y2).

Since no asymptotic critical values are available, one may wonder whether we can use data-
dependent “critical values”—such as permutation-based critical values—instead of asymptotic
ones, mainly because randomization comes from random treatment assignment, making intu-
itive sense to consider randomization inference for testing.

We argue that permutation-based inference is generally not valid in the presence of CAR
schemes. To see why, we note that, in light of Theorem 1, the 2SKS statistic is not asymptotically
pivotal. Therefore one can deduce that the corresponding permutation test fails to control the
Type 1 error even asymptotically. This conclusion is an immediate consequence of the fact that
the permutation distribution based on the 2SKS statistic behaves like the limit distribution as
if the randomization was simple, not like the true unconditional limiting distribution under
CAR. The following theorem due to Chung and Olivares (2020) formally presents this fact.
Note that the null hypothesis is not assumed.

Theorem 2. Consider testing the hypothesis (2). If assumptions A.1–A.2, then the permutation
distribution (6) based on the 2SKS statistic is such that

sup
t

∣∣∣R̂K
m,n(t)− J1(t)

∣∣∣ P→ 0 ,
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where J1(·) denotes the CDF of K1 ≡ supy|GP̄ (y)|, where GP̄ is a P̄ -Brownian bridge corre-
sponding to the mixture distribution P̄ given by

P̄ (y) =
∑
s∈S

p(s)
{
λF1(y|S = s) + (1− λ)F0(y|S = s)

}
. (11)

The permutation test based on the 2SKS statistic under CAR fails to control the type 1
error rate, even in large samples, since the 2SKS statistic is not asymptotically pivotal—the
limiting distribution depends on stratification. We confirm this phenomenon in the simulation
studies in Section 5, where the empirical rejection probabilities under the null hypothesis are
substantially different from the nominal level.

With this setup, our goal is to find an asymptotically valid permutation test for H0. First,
we introduce an exchangeable bootstrap approach to consistently estimating the 2SKS statistic’s
asymptotic null distribution under CAR. Second, we find a permutation test whose limiting
rejection probability under the null hypothesis equals the nominal level in large samples. The
next section formalizes these ideas.

4 Main Results: Restoring Asymptotic Validity

The main results in this section—Theorems 3 and 4—show that we can indeed develop asymp-
totically valid permutation test for (2) under CAR. These results depend on an insightful idea
by Beran (1987, 1988), based on the inverse CDF property. More specifically, one can transform
the original 2SKS statistic by its bootstrap CDF. Then, once we ensure the consistency of the
bootstrap, the newly transformed statistic—which is referred to as prepivoted—is asymptoti-
cally uniformly distributed on [0, 1], and thereby restoring the feasibility of an asymptotically
distribution-free test statistic.

This section starts by presenting an exchangeable bootstrap method to approximate the
limiting null distribution of the 2SKS statistic under CAR. We specialize in the Bayesian
bootstrap (Rubin, 1981), but our conditions allow for different bootstrap weights. Then, we
introduce the the new permutation test based on the prepivoted statistic (14). We show that
the permutation test based on the prepivoted statistic has rejection probability that tends to
α for testing equality of distributions under CAR.

4.1 Exchangeable Bootstrap under CAR

Before establishing the consistency of the exchangeable bootstrap, we introduce the following
condition for the bootstrap weights.
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A. 3. For each N , let (ω1, . . . , ωN) be an exchangeable, nonnegative random vector independent
of data {(Yi, Ai, Zi) : 1 ≤ i ≤ N}, such that the following conditions are satisfied under F1 and
F0

sup
N

{∫ ∞
0

√
P (|ω1 − ω̄N | > x)dx

}
<∞,

N−1/2 E max
1≤i≤N

|ωi − ω̄N |
P→ 0,

N−1
N∑
i=1

(ωi − ω̄N)2 P→ c2 > 0 .

Throughout this paper, the bootstrap weights ω1, . . . , ωN are i.i.d. from the uniform Dirich-
let distribution. This choice of weights leads to the so-called Bayesian bootstrap Rubin (1981),
thus satisfying the conditions stated in assumption A.3 (Van der Vaart and Wellner, 1996, Sec-
tion 3.6.2).5 Instead of sampling each Yi independently with replacement and equal probability
1/N , the Bayesian bootstrap uses a posterior probability distribution centered at 1/N for each
Yi, but the probability of selection changes from sample to sample. Rubin (1981) shows that
the Bayesian bootstrap procedure leads to a Dirichlet posterior distribution and is based on a
conjugate prior for the Dirichlet.

Consider the weighted bootstrap analogues of the empirical CDF,

F̂ ω
1 (y) = 1

m

N∑
i=1

ωi1{Yi≤y}Ai and F̂ ω
0 (y) = 1

n

N∑
i=1

ωi1{Yi≤y}(1− Ai) .

The two-sample weighted bootstrap empirical process is given by

V ω
m,n(y;X) =

√
mn

N

{
F̂ ω

1 (y)− F̂ ω
0 (y)−

(
F̂1(y)− F̂0(y)

)}
=
√
mn

N

{
F̃1(y)− F̃0(y)

}
(12)

where F̃a ≡ F̂a − F̂ ω
a , a ∈ {0, 1}. The 2SKS based on it as

Kω
m,n(X) = sup

y

∣∣∣V ω
m,n(y,X)

∣∣∣ . (13)

The following theorem states the consistency of the weighted bootstrap.

Theorem 3. Suppose the distribution of the data satisfies assumption A.1 and that the treat-
ment assignment is such that assumption A.2 holds. For each N , let (ω1, . . . , ωN) be weights
satisfying assumption A.3. Then, conditionally on data, the process {V ω

m,n(y,X) : y ∈ R}
converges weakly under the null hypothesis to H(·) in probability. Here H(·) is a tight Gaussian
process as in Theorem 1.

5Alternative examples of weights satisfying assumption A.3 are the multinomial weights, multinomial repli-
cates, and the wild bootstrap, to name a few.
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Furthermore, conditionally on data, Kω
m,n converges in distribution to K = supy|H(y)| with

CDF J(·, F1, F0) defined in Theorem 1.

To gain further intuition about the previous result, let Jm,n(F1, F0) be the distribution of
Km,n(X), and Jm,n(·, F1, F0) be the corresponding CDF defined by

Jm,n(t, F1, F0) = PF1,F0

{
Km,n ≤ t

}
.

Following Beran (1988), we define the prepivoted statistic as

Tm,n(X) = Jm,n
(
Km,n(X), F̃1, F̃0

)
. (14)

The previous theorem shows that the bootstrap CDF Jm,n(·, F̃1, F̃0) converges in proba-
bility to J(·, F1, F0) in supremum norm. Since Jm,n(·, F1, F0) itself converges to a continuous
J(·, F1, F0) by Theorem 1, it follows that Tm,n(X) = Jm,n

(
Km,n(X), F̃1, F̃0

)
converges weakly

to the uniform [0, 1].

Remark 5. An alternative approach to the exchangeable bootstrap is the covariate-adaptive
bootstrap (CAB), originally due to Shao, Yu, and Zhong (2010). In a nutshell, the CAB
proceeds by first resampling SN with replacement to generate a new vector of assignments
AN , and then by resampling X with replacement for each cell defined by combinations of
strata and treatment indicators. One benefits of the CAB is that CAB samples are cross-
sectionally independent given data Zhang and Zheng (2020). However, researchers need to know
the treatment assignment rule and the baseline covariates used in stratification to implement
the CAB. While this knowledge is commonly available in most RCTs, this is not always the
case when ethical considerations play a central role. For example, field experiments—like the
one we consider in our empirical application—frequently hide pre-treatment characteristics to
fulfill their IRB commitments to keep the subjects in the experiment anonymous, thus ensuring
minimal risk (Duflo and Banerjee, 2017, Chapter 5). Our exchangeable bootstrap approach
bypasses this difficulty. See Section 6 for more discussion. �

4.2 Asymptotically Valid Permutation Test under CAR

We now turn to our key theoretical result. Let π ∈ GN be a random permutation of {1, . . . , N}
as in Section 2.3. The permutation distribution based on Tm,n is given by

R̂T
m,n(t) = 1

N !
∑
π∈GN

1{Tm,n(xπ(1),...,xπ(N))≤ t} . (15)
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We seek the limiting behavior of R̂T
m,n and its upper α-quantile, which we now denote r̂m,n,

where

r̂m,n(1− α) = inf{t : R̂T
m,n(t) ≥ 1− α} .

The following theorem shows that the proposed test is asymptotically valid, i.e., the permu-
tation distribution based on Tm,n(X) is asymptotically uniformly distributed on [0, 1]. Conse-
quently, the α-upper quantiles r̂m,n can be used as “critical values” for the prepivoted statistic.
Note that the null hypothesis is not assumed.

Theorem 4. Consider testing the hypothesis (2). If assumptions A.1–A.3 hold with τ(s) = 0
for all s ∈ S , then the permutation distribution R̂T

m,n(·) of Tm,n(X) defined in (15) satisfies

sup
0≤t≤1

∣∣∣R̂T
m,n(t)− U(t)

∣∣∣ P→ 0 ,

where U(·) is the CDF of the uniform distribution on [0, 1]. Furthermore, r̂m,n(1− α) P→ 1− α.

Remark 6. From the construction of the permutation test in (5) based on Tm,n(X), we have

Pr {Tm,n(X) > r̂m,n} ≤ E [φ(X)] ≤ Pr {Tm,n(X) ≥ r̂m,n} .

Then, Theorem 4 implies E [φ(X)]→ α (Lehmann and Romano, 2005, Section 15.2.2). �

Remark 7. There is no loss in power in using permutation critical values. To see why, let rm,n
be the 1−α quantile of the distribution of Tm,n. Typically the test based on Tm,n rejects when
Tm,n > rm,n, where rm,n is nonrandom. We have that rm,n → 1− α. Assume that Tm,n weakly
converges to some limit law U ′(·) under some sequence of alternatives that are contiguous to
some distribution satisfying the null hypothesis. Then the power of the test would tend to
1 − U ′(U−1(1 − α)). Thus, under the premises of the preceding Theorems 3 and 4, we have
that r̂m,n, obtained from the permutation distribution, satisfies r̂m,n P→ 1− α. The same result
follows under a sequence of contiguous alternatives, thus implying that the permutation test
has the same limiting local power as the test which uses nonrandom critical values. �

Remark 8. Bugni, Canay, and Shaikh (2018) consider a covariate-adaptive permutation test
for testing equality of means under CAR. Unlike the standard construction in Section 2.3,
the covariate-adaptive permutation test only permutes indices within strata, thus respecting
stratification. However, we do not consider this approach mainly because we need to know the
baseline covariates used in stratification—we permute data within strata. We cannot meet this
requirement always, particularly when anonymity of experimental subjects may be at stake,
like in the field experiment we consider in Section 6. �
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4.3 Implementation of the new Permutation Test

Given the previous sections’ theoretical results, we now elaborate on some missing implemen-
tation details of the proposed test. In particular, the following algorithm below illustrates how
the RATest package calculates the proposed permutation test. Note that we rely on a stochastic
approximation to the permutation distribution as in Remark 4.

Algorithm 1

1. Take a permutation of data Xπj , πj ∈ GN and calculate the 2SKS statistic, Kj ≡
Km,n(Xπj).

2. For b = 1, . . . , B,

(a) Draw weights ωb1, . . . , ωbN from a uniform Dirichlet distribution.

(b) Sample data according to the probabilities defined by the Dirichlet draws.

(c) Use these resampled data to calculate the 2SKS statistic. Call this new statistic K∗j,b.

3. The prepivoted statistic for πj is the fraction of the values {K∗j,b : 1 ≤ b ≤ B} that are
less than or equal to Kj, i.e., one minus the bootstrap p-value, given by

Tm,n(Xπj) = Jm,n(Kj, F̂1, F̂0) = 1
B

B∑
b=1

1{K∗j,b≤Kj} .

4. Repeat Steps 1–3 for 1 ≤ j ≤M , and collect these values into {Tm,n(Xπj) : 1 ≤ j ≤M}.

5. The permutation test rejects the null hypothesis if the observed prepivoted statistic exceeds
the upper-α quantile of the permutation distribution:

R̂T
m,n(t) = 1

M

M∑
j=1

1{Tm,n(Xπj )≤t} .

Remark 9. We may characterize drawing weights from a uniform Dirichlet distribution by
drawing from the N -dimensional unit simplex. Alternatively, we can achieve this by drawing
Gamma (1, 1) distributed numbers and normalizing these to sum to 1. However, since a Gamma
(1, 1) is equivalent to an Exp(1) distribution, we can define the weights as ωi = ηi/η̄, 1 ≤ i ≤ N ,
where ηi ∼Exp(1) and η̄ = N−1∑N

i=1 ηi. �

Remark 10. In practice, Algorithm 1 can be expensive to compute as the sample size increases.
It involves resampling twice—once with replacement for the bootstrap, and once without it,
for the permutation test. Whether there is some computationally more efficient algorithm to
compute our test is something we leave as an interesting topic for future research. �
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5 Monte Carlo Experiments

In this section, we study the proposed test’s finite sample performance through a Monte Carlo
exercise compared to two other methods, namely the 2SKS test and the permutation test based
on the same 2SKS statistic. The main focus is on the finite-sample implications of the asymptotic
validity of our permutation test. To accomplish our goal, we adhere to the design in Bugni,
Canay, and Shaikh (2018). The following rule governs the potential outcomes:

Yi(a) = µa +ma(Zi) + σa(Zi)εi(a), a ∈ {0, 1} , 1 ≤ i ≤ N ,

where {Zi, εi(1), εi(0) : 1 ≤ i ≤ N} are i.i.d. This gives rise to the observed outcomes

Yi = µ0 +m0(Zi) + {(µ1 − µ0) + (m1(Zi)−m0(Zi))}Ai + ui

ui = σ1(Zi)εi(1)Ai + σ0(Zi)εi(0)(1− Ai) .

We compare our permutation test with the following procedures:

2SKS: This test is the classical 2SKS test described in Section 3, i.e., this test does not
take into account CAR. We use the asymptotic approximation to its distribution under
the null hypothesis (Simard and L’Ecuyer, 2011, Section 3). We rely on ks.test, the
base R implementation to compute the p-value of the 2SKS test. See Drew, Glen, and
Leemis (2000) and Marsaglia, Tsang, and Wang (2003) for a review of the computational
aspects involved in calculating the exact 2SKS distribution for some of the most popular
existing methods.

Naive: This test is the permutation test of Section 3 based on the 2SKS statistic. We
call it “naive” in the same spirit as in Bugni, Canay, and Shaikh (2018), i.e. because this
test ignores the effects of stratification on inference. We sample 1000 permutations for
the stochastic approximation of the permutation distribution (see Remark 4). See the R
package RATest for additional documentation.

5.1 Size

Arguing as in Bugni, Canay, and Shaikh (2018), we consider the following two models to
investigate the empirical size:

Model 1 (Linear Model): Let Zi ∼Beta(2, 2), σ0(Zi) = 1, σ1(Zi) = σ1, εi(1) ∼ N (0, 1),
εi(0) ∼ N (0, 1), and m1(Zi) = m0(Zi) = γZi.

Model 2 (Non-linear, t distribution, homogeneous): Let Zi ∼Unif(−2, 2), σ0(Zi) = Z2
i ,
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σ1(Zi) = Z2
i σ1, εi(1) ∼ 1

3t3, εi(0) ∼ 1
3t3, and

m1(Zi) = m0(Zi) =

γZi if Zi ∈ [−1, 1]

γ(2− Z2
i ) otherwise.

.

Table 1 shows the rejection probabilities under the null hypothesis at α = 0.05, i.e., we
impose the restrictions σ1 = 1 and µ1 = µ0 = 0. In our simulations we use 5, 000 replications
and sample size N = 200. For each model, different combinations of target proportions λ ∈
{0.5, 0.7} and strata |S | ∈ {4, 10} give rise to four parameter configurations. When λ = 0.5,
we consider four different CAR schemes—simple randomization (SRS), covariate-adaptive Wei’s
biased-coined design (WEI) with ϕ(x) = 0.5(1 − x), covariate-adaptive Efron’s biased-coined
design (BCD) with γ = 0.75, and stratified block randomization (SBR). See Appendix C for
more details.

Table 1: Size of α = 0.05 tests H0 : F1 = F0.

|S| = 4, λ = 0.5, γ = 1, σ1 = 1 |S| = 10, λ = 0.5, γ = 1, σ1 = 1
Model CAR 2SKS Naive PermTest PermTest 2SKS Naive PermTest PermTest

SRS 0.0532 0.0486 0.0443 0.0486 0.0508 0.0560
1 WEI 0.0250 0.0226 0.0328 0.0216 0.0220 0.0307

BCD 0.0144 0.0132 0.0260 0.0142 0.0146 0.0328
SBR 0.0118 0.0130 0.0273 0.0122 0.0102 0.0300

SRS 0.0496 0.0476 0.0580 0.0478 0.0526 0.0370
2 WEI 0.0444 0.0433 0.0406 0.0144 0.0144 0.0267

BCD 0.0414 0.0408 0.0520 0.0074 0.0074 0.0172
SBR 0.0334 0.0407 0.0465 0.0068 0.0060 0.0124

|S| = 4, λ = 0.7, γ = 1, σ1 = 1 |S| = 10, λ = 0.7, γ = 1, σ1 = 1
1 SRS 0.0492 0.0510 0.0460 0.0526 0.0468 0.0480

SBR 0.0128 0.0146 0.0306 0.0102 0.0116 0.0280

2 SRS 0.0528 0.0490 0.0500 0.0452 0.0506 0.0500
SBR 0.0392 0.0400 0.0446 0.0060 0.0066 0.0108

Rejection probabilities based on 5000 replications for the three tests defined in the text, four different
CAR schemes, and two data generating processes. The symbols 2SKS, Naive PermTest, and PermTest
stand for the classical 2SKS test, the permutation test based on the classical 2SKS, and the proposed
permutation test robust to CAR, respectively. N = 200 across experiments. We use 1000 permuta-
tions for the stochastic approximation of the permutation distribution, and 1000 weighted bootstrap
samples.

All three tests perform as expected under simple randomization. These tests control the
type 1 error rate in this setup, so the numerical discrepancies from the nominal size are due to
simulation noise. We note that the 2SKS test under rejects quite severely in Model 1, while it
suffers from modest size distortions for Model 2 under WEI and BCD schemes. However, the
size distortions increase when the number of strata increases, regardless of the randomization
scheme or the model generating the outcomes. Meanwhile, the naive permutation test exhibits
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considerable size distortions in Model 1 but performs reasonably well under rejection under
Model 2. Similar to the 2SKS test’s behavior, the naive permutation test performs very poorly
when the number of strata increases, delivering rejection probabilities considerably below the
nominal level.6

In contrast, our permutation test outperforms the existing alternatives across all specifica-
tions considered in our numerical exercise. For both models, the size is close to the nominal
level when the treatment assignment mechanism follows WEI and BCDschemes, and the num-
ber of strata is small. However, the size is more distorted under SBR, particularly when the
number of strata increases.7

6 Empirical Illustration

To illustrate the proposed method in this paper, we present a reappraisal of the field experiment
by Butler and Broockman (2011) about the effect of race on state legislators’ responsiveness
to help their constituents register to vote during the 2008 elections in the United States. One
may observe legislators engaging in discrimination based on race for at least two reasons. First,
legislators may better represent those who share their characteristics. Second, this behavior
may arise due to strategic partisanship, i.e., legislators appeal primarily to constituents who
are likely to vote for them.8 To assess the interconnection between political discrimination and
representation, the authors conduct an experiment involving 4, 859 U.S. state legislators who
received fictitious emails from a constituent with either a commonly regarded Black or White
name. These names were randomly assigned using stratified block randomization to balance
over baseline covariates, namely the state, legislative chamber, political party, and whether the
legislator was up for reelection. The authors also randomly signal voters’ partisanship by asking
about Democratic primary elections, Republican primary elections, or primary elections without
explicitly mentioning any party. The final sample contains the 4, 859 emails, including whether
the state legislator responded at all, the treatment indicator, and partisanship signal. See
Butler and Broockman (2011) for a more detailed description of the data, summary statistics,
and theoretical background on this topic.

A defining characteristic of this field experiment is that it may cause reputational harm
6We observe similar size distortions when we consider the so-called covariate-adaptive permutation test,

i.e., when we permute the data within stratum, and therefore we omit them here. See Rosenberger and Lachin
(2015, Chapter 9) and Bugni, Canay, and Shaikh (2018, Remark 4.14) for more details and discussion.

7The average bootstrap sample contains roughly 63.2% of the original observations and omits 26.8%. To
see why, observe that the probability that a particular observation is not chosen from a set of N observations
is 1 − 1/N , so the probability that the observation is not chosen N times is (1 − 1/N)N , which converges to
1/e ≈ 0.368 as N → ∞. This may affect the performance of the 2SKS statistic, especially for the sample size
considered in our numerical exercise.

8For example, Black constituents are far more likely to align with the Democratic party—84% of the Black
voters registered as of 2017 (Pew Research Center, 2018).
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given the study’s subject. As a result, the public data file does not include the control variables
because researchers pledge to the ethics committee to keep the legislators in the experiment
anonymous. One of our permutation test’s main advantages is that we do not require knowledge
about strata to implement it, thus providing a flexible framework to perform asymptotically
valid permutation inference for the hypothesis of interest in the presence of CAR—like the
one used in this experiment—while simultaneously safeguarding anonymity. This characteris-
tic makes our approach an attractive one to study randomized experiments involving public
officials.

Table 2 shows the empirical results.9 The first three columns report response rates when we
do not signal the constituent’s partisanship. Meanwhile, the remaining three columns randomize
the constituent’s partisanship signal in the letter. Column 1 reports a statistically significant
mean difference of 5.1% in the response rates, where constituents with putatively Black names
receive fewer responses than their White counterparts. However, this difference in responses
disappears once we signal partisanship (column 4).

Table 2: Response Rates: Overall and Party-specific Effects.

No Partisanship Signal Partisanship Signal
Overall Republican Democratic Overall Republican Democratic

Legislator Legislator Legislator Legislator
Black Alias 55.3% 58.9% 52.4% 55.7% 56% 51.8%

m = 806 m = 360 m = 446 m = 1622 m = 723 m = 723
White Alias 60.5% 67.0% 55.1% 55.8% 60.8% 55.6%

n = 812 n = 364 n = 448 n = 1619 n = 899 n = 896
Race Differential −5.1% −8.1% −2.7% −0.1% −4.8% 3.7%

p = 0.04 p = 0.04 p = 0.42 p = 0.95 p = 0.12 p = 0.11
Equality of p = 0.02 p = 0.10 p = 0.41 p = 0.93 p = 0.16 p = 0.11
Distributions
This table reports response rates in percentage points as a result of randomized putatively Black
or White aliases. The first three columns provide response rates when the constituent’s partisan-
ship is not signaled, and the remaining three when the constituent’s partisanship is signaled. The
label “Republican Legislator” indicates the subsample of republican representatives, and similarly for
“Democratic Legislator.” The last two rows report p-values for two-tailed t–tests for equality of means
and our permutation test for equality of distributions between experimental groups, respectively. We
adjust these p–values to account for multiple hypothesis testing following Holm (1979) procedure.
We use 1000 permutations for the stochastic approximation of the permutation distribution. When
partishanship is not signaled, we use 1000 weighted bootstrap samples, otherwise 600 due to memory
storage.

To test whether state legislators respond more favorably to voters who, based on their race,
are more likely to be of the same political party, the columns 2–3 condition on legislator’s
party affiliation. We observe a statistically significant higher response rate to the White alias
than the Black alias when the legislator is Republican. In contrast, there is no statistically

9We adjust the p-values to account for multiple hypothesis testing following Holm (1979) method. For
unadjusted p-values, see Butler and Broockman (2011, Tables 1–3). See Chung and Olivares (2020, Section 4)
for a discussion about multiple testing adjustments for permutation based inference for hypotheses like the one
we consider here.
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significant mean difference in response rates between Black and White aliases when the legislator
is Democratic. Lastly, since one may argue that legislators respond more favorably to co-
partisans, columns 4–6 show response rates for Republican and Democratic legislators when
we signal partisanship. We can see that there is no statistically significant mean difference
in response rates between experimental groups when we signal partisanship regardless of the
legislator’s party affiliation.

Our permutation test complements these findings in several important ways. First—when
we do not signal partisanship—we reject the hypothesis that the response distributions be-
tween experimental groups are the same in the overall case and when the legislator is from the
Democratic party (columns 1 and 4). On the other hand, when the legislator is Republican,
our permutation test fails to reject the hypothesis of equality of distributions. Second, when we
signal partisanship, our permutation test fails to reject the null hypothesis that the response
distributions between aliases are equal across specifications.

Butler and Broockman (2011) investigate potential heterogeneity in the treatment effect
to shed some light on legislators’ responsiveness when they receive the partisanship signal. In
particular, they show that legislators from both parties discriminate at similar rates once we
take race into account—White Democrats and White Republicans respond more often to White
aliases, and their response rates are statistically indistinguishable. These findings conflict with
our conclusions when we signal partisanship. However, once we adjust for multiple hypoth-
esis testing, Butler and Broockman (2011, Table 3) initial results are no longer statistically
significant.

Thus, the conclusions based on our proposed test suggest a clear pattern: legislators show
more responsiveness to those constituents who, based on their race, are believed to be of the
same party (no signal), but the response rates to each racial alias are indistinguishable from
one another once the uncertainty disappears (signal).

7 Conclusions

This paper introduces an asymptotically robust permutation test for testing equality of dis-
tributions under CAR, that is, our permutation test has rejection probability that tends to
α. From a theoretical point of view, stratifying impacts inference negatively and may lead to
severe size distortions. Our first result shows that the limiting rejection probability of the stan-
dard 2SKS test can be substantially below its nominal level. We then show that this problem
carries over to permutation-based inference indeed. Our second result establishes that in this
setup, the permutation test that does not account for CAR fails to control the type 1 error
rate, even in large samples. To demonstrate the quantitative importance of this phenomenon,
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we present simulation evidence showing that the 2SKS and permutation tests are not reliable
procedures for the testing problem of interest—the empirical rejection probabilities under the
null hypothesis are shockingly different from the nominal level.

This paper’s main contribution—Theorems 3 and 4—shows that we can indeed develop
asymptotically valid permutation test for testing equality of distributions under CAR. Our
main results exploit Beran (1987, 1988)’s idea and transform the initial 2SKS statistic by its
bootstrap CDF. We establish the consistency of the exchangeable bootstrap under CAR in
Theorem 3. Then, the transformed statistic—also called prepivoted—becomes asymptotically
uniformly distributed on [0, 1], effectively removing the effect of stratification. We show in
Theorem 4 that the permutation test based on the prepivoted statistic has rejection probability
that tends to α for testing equality of distributions under CAR.

Our theoretical and simulation results imply that the size control could be improved, often
notably, outperforming the existing alternatives. Therefore, we recommend that researchers
use the permutation test we develop in this paper for testing equality of distributions when
randomization is covariate-adaptive. We also provide open-source software implementation,
the RATest R package, to apply our proposed method straightforwardly. We illustrate our
method’s empirical relevance by revisiting a field experiment by Butler and Broockman (2011)
about the effect of race on state legislators’ responsiveness to help their constituents register
to vote during the 2008 elections in the United States.
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Appendix

Notation: The classes F in all of the applications in this Appendix are collections of indicator
functions of lower rectangles in R. Thus, the empirical processes in this paper can be viewed as
random maps into `∞(F )—the space of all bounded functions on R equipped with the uniform
norm—and weak convergence is understood as convergence in distribution in `∞(F ). We are
going to assume that the class F is pointwise measurable (Van der Vaart and Wellner, 1996,
Example 2.3.4), ruling out measurability problems with regards suprema.

Throughout this appendix, if ξ is a random variable defined on a probability space (Ω,B, P ),
it is assumed that ξ1, . . . , ξN are coordinate projections on the product space (ΩN ,BN , PN),
and the expectations are computed for PN . If auxiliary variables—independent of the ξs—are
involved, we use a similar convention. In that case, the underlying probability space is assumed
to be of the form (ΩN ,BN , PN)×(Z,C , Q), with ξ1, . . . , ξN equal to the coordinate projections
on the first N coordinates and the additional variables depending only on the N+1st coordinate.

Symbols Op(1) and op(1) stand for being bounded in probability and convergence to zero
in probability, respectively. All vector are column vectors. We use b·c to denote the largest
smaller integer. We use P→ to denote convergence in probability, and d→ to denote convergence
in distribution, respectively. For two random variables ξ and η, write ξ d= η if they have the
same distribution.
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A Proof of the Main Results

A.1 Proof of Theorem 1

We begin the proof by noting some preliminary facts which will be useful in the analysis of the
asymptotic behavior of Km,n. As a first step, develop

Vm,n(y;X) =
√
mn

N

{
F̂1(y)− F̂0(y)

}
under the null hypothesis as

Vm,n(y;X) =
√
mn

N

{(
F̂1(y)− F1(y)

)
−
(
F̂0(y)− F0(y)

)}
=
√
mn

N

{
1
m

N∑
i=1

(
1{Yi(1)≤y} − F1(y)

)
Ai −

1
n

N∑
i=1

(
1{Yi(0)≤y} − F0(y)

)
(1− Ai)

}

=
(√

mn

N

)
1√
N

{
N

m

N∑
i=1

(
1{Yi(1)≤y} − F1(y)

)
Ai −

N

n

N∑
i=1

(
1{Yi(0)≤y} − F0(y)

)
(1− Ai)

}

=
(√

mn

N

)
1√
N

{(DN
N

+ λ
)−1 N∑

i=1

(
1{Yi(1)≤y} − F1(y)

)
Ai

−
(

1− DN
N
− λ

)−1 N∑
i=1

(
1{Yi(0)≤y} − F0(y)

)
(1− Ai)

}

=
(√

mn

N

)((DN
N

+ λ
)−1 (

1− DN
N
− λ

)−1)
×

1√
N

{(
1− DN

N
− λ

) N∑
i=1

(
1{Yi(1)≤y} − F1(y)

)
Ai −

(DN
N

+ λ
) N∑
i=1

(
1{Yi(0)≤y} − F0(y)

)
(1− Ai)

}

= MN,1
(
MN,2(y) +MN,3(y)

)

23



where

MN,1 =
(√

mn

N

)(DN
N

+ λ
)−1 (

1− DN
N
− λ

)−1

MN,2(y) = 1√
N

{
N∑
i=1

(
(1− λ)

(
1{Yi(1)≤y} − F1(y)

)
Ai − λ

(
1{Yi(0)≤y} − F0(y)

)
(1− Ai)

)}

MN,3(y) = − DN√
N

{
1
N

N∑
i=1

((
1{Yi(1)≤y} − F1(y)

)
Ai +

(
1{Yi(0)≤y} − F0(y)

)
(1− Ai)

)}

Assumption 2 (ii) implies that MN,1
P→ (λ(1 − λ))−1/2 as N → ∞. Similarly, assumptions

A.1, A.2 (ii) and Lemma B.5, allow us to conclude that

sup
y
|MN,3(y)| P→ 0, as N →∞

under the null hypothesis. Moreover, Lemma B.1 shows that MN,2(·) weakly converges to
G1(·) + G2(·) + G3(·), where (G1,G2,G3) (·) are three independent Gaussian processes with
covariance functions C1(y1, y2), C2(y1, y2), and C3(y1, y2) respectively. Therefore Vm,n(·) con-
verges weakly in `∞(F ) under the null hypothesis to a tight Gaussian process H(·); it has mean
zero with covariance structure:

CH(y1, y2) = 1
λ(1− λ)

(
C1(y1, y2) + C2(y1, y2) + C3(y1, y2)

)
.

This concludes the proof of the first part of the theorem. Note that the maps v → ‖v‖ from
`∞(F ) into R are continuous with respect to the supremum norm. Then, a direct application of
the continuous mapping theorem (Van der Vaart, 2000, Theorem 18.11) yields the final result.
This finishes the proof.

A.2 Proof of Corollary 1

Consider the setup and notation of Theorem 1. Under simple randomization, m1(y|Z) =
m0(y|Z) = 0 for every y, where ma(y|Z), a ∈ {0, 1} are defined in (B.3)–(B.2). This implies
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that the covariances C2 and C3 in (8)–(9) are zero too. Therefore,

CH(y1, y2) = 1
λ(1− λ)

(
C1(y1, y2) + C2(y1, y2) + C3(y1, y2)

)
= 1
λ(1− λ)

(
λ(1− λ) (F0(y1 ∧ y2)− F0(y1)F0(y2))

)
= F0(y1 ∧ y2)− F0(y1)F0(y2) ,

as desired.

A.3 Proof of Theorem 2

The proof follows closely the arguments in the proof of Chung and Olivares (2020, Theorem
A.2). Independent of the X, let (π(1), . . . , π(N)) and (π′(1), . . . , π′(N)) be two independent
random permutations of {1, . . . , N}. We will denote Xπ = (Xπ(1), . . . , Xπ(N)); Xπ′ is defined
the same way with π replaced by π′.

We seek to show that

(
Km,n(Xπ), Km,n(Xπ′)

) d→ (K1, K
′
1) , (A.1)

where K1 and K ′1 are independent with common CDF J1(·). Then Hoeffding’s Condition
(Lehmann and Romano, 2005, Theorem 15.2.3) implies that

sup
t

∣∣∣R̂K
m,n(t)− J1(t)

∣∣∣ P→ 0 ,

completing the proof of the theorem. In the following, we prove (A.1) in two steps.

Step 1. Apply the coupling construction of Chung and Romano (2013) as described in Ap-
pendix D. More specifically, couple data X̃ with an auxiliary sample of N i.i.d. observations
X̄ = (X̄1, . . . , X̄N) from the mixture distribution P̄ with

P̄ (y) =
∑
s∈S

p(s) {λF1(y|S = s) + (1− λ)F0(y|S = s)} .

See Appendix D for a detailed exposition of the coupling construction and notation.
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Step 2. We now argue that the permutation distribution based on X should behave approxi-
mately like the behavior of the permutation distribution based on X̄. In view of the arguments
in the proof of Lemma 5.1 in Chung and Romano (2013), it suffices to verify the following two
conditions

(
Km,n(X̄π), Km,n(X̄π′)

) d→ (K1, K
′
1) (A.2)

Km,n(X̄π,π0)−Km,n(Xπ) P→ 0 , (A.3)

where the permutation π0 is properly defined in Appendix D. Condition (A.2) follows by the
same reasoning as in the proof of Chung and Olivares (2020, Lemma B.1).

To show (A.3), we first construct an auxiliary process Ṽm,n that is stochastically equivalent
to Vm,n(·;X) in the wide sense i.e. they have the same finite-dimensional distributions. Inde-
pendently for each s ∈ S and independently of (AN ,SN), let {Y s

i (1), Y s
i (0) : 1 ≤ i ≤ N} be

i.i.d. with marginal distribution equal to the distribution of (Yi(1), Yi(0))|Si = s.

The auxiliary process Ṽm,n is thus given by

Ṽm,n(y) ≡
√
mn

N

∑
s∈S

 1
m

NN (s)+m(s)∑
i=NN (s)+1

1{Y si (1)≤y} −
1
n

NN (s)+m(s)+n(s)∑
i=NN (s)+m(s)+1

1{Y si (0)≤y}

 ,

where NN(s) ≡ ∑N
i=1 1{Si<s} for each s. Intuitively, the auxiliary process Ṽm,n orders units

by strata, and then by Ai = 1 first and Ai = 0 second within strata. This construction—
combined with the i.i.d. assumption on data and assumption A.2 i)—ensures the distribution
of Vm,n(·;X) is the same as Ṽm,n, since

{
Vm,n(y;X)|{Ai, Si}Ni=1

} d=
{
Ṽm,n(y)|{Ai, Si}Ni=1

}
.

Furthermore, Vm,n(·; X̃) from the coupling construction (appendix D), and Ṽm,n have the same
distribution by the same reasoning. With this in mind, a sufficient condition for (A.3) is given
by showing Vm,n(y) = Vm,n(y; X̄ππ0)− Vm,n(y; X̃π) P→ 0 uniformly over y ∈ R.

To prove the desired result, it is useful to rewrite Vm,n as follows

Vm,n(y) =
√

n

mN

{
N∑
i=1

(
1{X̄π0(i)≤y} − 1{X̃i≤y}

)
Wπ(i)

}
, (A.4)
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where Wi is defined as

Wi =

 1 if π(i) ≤ m

−m
n

if π(i) > m
, 1 ≤ i ≤ N .

The argument provided here follows closely the arguments in the proof of Chung and Oli-
vares (2020, Lemma B.2) and the coupling construction in appendix D. First, we note that
E [Vm,n(y)] = 0 by independence of data and Wπ(i). To investigate the variance, observe that
the elements in X̄π0 and X̃ are the same except for C of them (see appendix D for more details).
This makes all the terms in the difference Vm,n(y) zero, except for at most C of them. Condi-
tioning on the random drawing of indices in the coupling construction—hence conditioning on
C and π0—and on the permutation π, the variance of Vm,n(y) is determined by

V [Vm,n(y)] = E [V (Vm,n(y)| C, π, π0)] + V [E (Vm,n(y)| C, π, π0)] (A.5)

by the law of total variance. We claim that both terms in previous display are zero, asymptot-
ically. Note that the conditional variance in the first term in (A.5) is bounded above

V [Vm,n(y)| C, π, π0] = n

Nm
C V

[
Wπ(i)

(
1{X̄π0(i)≤y} − 1{X̃i≤y}

)∣∣∣ C, π, π0
]
≤ n

m

C
N
O(1) .

We show in (D.3) that E(C/N) ≤ N−1/2 and so the first term on the right hand side of (A.5)
converges to 0. Another application of the law of total variances applied to the second term
in (A.5) yields

V [E (Vm,n(y)| C, π, π0)] = E
{
V
[
E (Vm,n(y)| C, π, π0)| C, π0

]}
+ V

{
E
[
E (Vm,n(y)| C, π, π0)| C, π0

]}
.

Let A be the number of observations among those C observations that have Wπ(i) = 1. Condi-
tioning on the random drawing of indices in the coupling construction—hence conditioning on
C and π0—, the distribution of A is hypergeometric with C draws out of N elements, among
which m have Wπ(i) = 1. This gives

E[A|C, π0] = C
(
m

N

)
, and V[A|C, π0] = C

(
m

N

)(
n

N

)(
N − C
N − 1

)
.
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With this in mind, it can be shown that

E
{
V
[
E (Vm,n(y)| C, π, π0)| C, π0

]}
= 1
N − 1

[
E(C)− E(C2)

( 1
N

)]
O(1) = o(1)

V
{
E
[
E (Vm,n(y)| C, π, π0)| C, π0

]}
= 0 .

Then (A.4) converges to 0 in quadratic mean. Since both processes defining Vm,n(y) are asymp-
totically equicontinuous, the convergence in probability holds uniformly. This finishes the proof
of the Theorem.

A.4 Proof of Theorem 3

The process V ω
m,n(y;X) can equivalently be written as

V ω
m,n(y;X) =

√
mn

N

{
F̂ ω

1 (y)− F̂ ω
0 (y)−

(
F̂1(y)− F̂0(y)

)}
=
√
mn

N

{
1
m

N∑
i=1

(ωi − 1)
(
1{Yi(1)≤y} − F1(y)

)
Ai

− 1
n

N∑
i=1

(ωi − 1)
(
1{Yi(0)≤y} − F0(y)

)
(1− Ai)

}

Develop the above expression in the same way as in the proof of Theorem 1 to conclude
V ω
m,n(y) = Mn,1

(
Mω

n,2(y) +Mω
n,3(y)

)
, where

MN,1 =
(√

mn

N

)(DN
N

+ λ
)−1 (

1− DN
N
− λ

)−1

Mω
N,2(y) = 1√

N

{
N∑
i=1

(ωi − 1)
(
(1− λ)

(
1{Yi(1)≤y} − F1(y)

)
Ai − λ

(
1{Yi(0)≤y} − F0(y)

)
(1− Ai)

)}

Mω
N,3(y) = − DN√

N

{
1
N

N∑
i=1

(ωi − 1)
((
1{Yi(1)≤y} − F1(y)

)
Ai +

(
1{Yi(0)≤y} − F0(y)

)
(1− Ai)

)}
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Note that MN,1 is the same as in the proof of Theorem 1, therefore MN,1
P→ (λ(1 − λ))−1/2 as

N →∞. Lemma B.9 allows us to conclude that

sup
y

∣∣∣Mω
N,3(y)

∣∣∣ P→ 0, as N →∞ .

Lastly, conditional weak convergence of Mω
N,2(·) to G1(·) + G2(·) + G3(·) is established in

Lemma B.6, where (G1,G2,G3) (·) are three independent Gaussian processes with covariance
functions C1(s, t), C2(s, t), and C3(s, t), defined in Lemma B.2. Therefore V ω

m,n(·) converges
weakly in `∞(F ) to a tight Gaussian process H(·) given data; this process is defined in Theo-
rem 1, concluding the proof of the first part of the theorem. Note that the maps v → ‖v‖ from
`∞(F ) into R are continuous with respect to the supremum norm. Then, a direct application of
the continuous mapping theorem (Van der Vaart, 2000, Theorem 18.11) yields the final result.
This finishes the proof.

A.5 Proof of Theorem 4

The proof follows closely the arguments in the proof of Chung and Romano (2016, Theorem
2.6). Fix δ > 0 and denote

P ≡
{
π ∈ GN : sup

y

∣∣∣F̃1,π(y)− P̄ (y)
∣∣∣ ≤ δ, sup

y

∣∣∣F̃0,π(y)− P̄ (y)
∣∣∣ ≤ δ

}
, (A.6)

where P̄ is the mixture distribution given by (11), and

F̃a,π(y) = 1
m

m∑
i=1

(ωi − 1)1{Ya,π(i)}, a ∈ {0, 1} .

Then, rewrite the permutation distribution (15) as follows

R̂T
m,n(t) = 1

N !
∑
π∈P

1{Jm,n(Km,n(xπ(1),...,xπ(N)),F̃1,π ,F̃0,π)≤ t} + 1
N !

∑
π∈Pc

1{Jm,n(Km,n(xπ(1),...,xπ(N)),F̃1,π ,F̃0,π)≤ t} .

We derive the limiting behavior of R̂T
m,n in three steps.
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Step 1 We begin by showing we can rewrite

R̂T
m,n(t) = 1

N !
∑
π∈P

1{Jm,n(Km,n(xπ(1),...,xπ(N)),F̃1,π ,F̃0,π)≤ t} + op(1) . (A.7)

To this end, it suffices to show that (N !)−1|P| P→ 1, where |v| denotes the cardinality of v. In
view of (A.6), the previous sufficient condition follows if we can verify

1
N !

∑
π

1{supy|F̃1,π(y)−P̄ (y)|≤δ}
P→ 1 , (A.8)

and similarly if we replace F̃1,π with F̃0,π. By Markov’s inequality, a sufficient condition for (A.8)
is given by

1
N !

∑
π

P
{

sup
y

∣∣∣F̃1,π(y)− P̄ (y)
∣∣∣ ≤ δ

}
→ 1 . (A.9)

By the contiguity results in Chung and Romano (2013, Section 5), we can deduce (A.9) from
the basic assumption of how it behaves under an i.i.d. sequence ξ1, . . . , ξm distributed according
to P̄ given in (11), combined with the fact that

1√
m

m∑
i=1

(ωi − 1)
(
1{Y1,i≤y} − P̄

) d= 1√
m

∑
s∈S

NN (s)+m(s)∑
i=NN (s)+1

(
ωi − 1)(1{Y si (1)≤y} − P̄ (y)

)
,

where the equality in distribution follows by the same reasoning as in the proof of Theorem 2
and independence between the weights ω1, . . . , ωm and data.

We begin by establishing the consistency of the exchangeable bootstrap based on ξ1, . . . , ξm

i.i.d. from P̄ . Observe first that F being P̄ -Donsker implies{
1√
m

m∑
i=1

(
1{ξi≤y} − P̄

)
: y ∈ R

}

converges weakly to a P̄ -Brownian bridge process. Since the weights ω1, . . . , ωm satisfy assump-
tion A.3, we also have that{

1√
m

m∑
i=1

(ωi − 1)
(
1{ξi≤y} − P̄

)
: y ∈ R

}
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converges weakly to the same P̄ -Brownian bridge process, and

P
{

sup
y

∣∣∣∣∣ 1
m

m∑
i=1

(ωi − 1)
(
1{ξi≤y} − P̄ (y)

)∣∣∣∣∣ ≤ δ

}
→ 1

by the multiplier central limit theorem (Van der Vaart and Wellner, 1996, Theorem 2.9.6).
Then,

P
{

sup
y

∣∣∣F̃1,π(y)− P̄ (y)
∣∣∣ ≤ δ

}
→ 1

by Chung and Romano (2013, Lemma 5.3), thus implying (A.9). An analogous argument
follows if we replace F̃1,π with F̃0,π.

Step 2 We know from previous step that F̃1,π(y) P→ P̄ (y) and F̃0,π(y) P→ P̄ (y) in uniform norm.
Recall that J1(·) is the CDF of the supremum of a P̄ -Brownian bridge. Then, with probability
tending to one, we can bound the first term on the right hand side of (A.7) by

1
N !

∑
π∈P

1{J1(Km,n(xπ(1),...,xπ(N)))≤ t−ε} ≤
1
N !

∑
π∈P

1{Jm,n(Km,n(xπ(1),...,xπ(N)),F̃1,π ,F̃0,π)≤ t}

≤ 1
N !

∑
π∈P

1{J1(Km,n(xπ(1),...,xπ(N)))≤ t+ε} (A.10)

for arbitrary ε > 0.

Step 3 We know from Theorem 2 that

sup
t

∣∣∣R̂K
m,n(t)− J1(t)

∣∣∣ P→ 0 ,

with J1(·) continuous and strictly increasing at J−1
1 (·) by Beran and Millar (1986, Proposition

2). Then, by the continuous mapping theorem for randomization distributions, Chung and
Romano (2016, Lemma A.6), we have that

1
N !

∑
π∈P

1{J1(Km,n(xπ(1),...,xπ(N)))≤ t−ε}
P→ t− ε ,

and
1
N !

∑
π∈P

1{J1(Km,n(xπ(1),...,xπ(N)))≤ t+ε}
P→ t+ ε .
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Then, for any ε > 0, condition (A.10) reduces to

t− ε ≤ 1
N !

∑
π∈P

1{Jm,n(Km,n(xπ(1),...,xπ(N)),F̃1,π ,F̃0,π)≤ t} ≤ t+ ε .

This finishes the proof of the Theorem.

B Auxiliary Lemmas

Lemma B.1. Suppose assumptions A.1 and A.2 hold. Then, MN,2(·) converges weakly in
`∞(F ) under the null hypothesis to a tight Gaussian process with mean 0 and covariance struc-
ture given by

C(y1, y2) = C1(y1, y2) + C2(y1, y2) + C3(y1, y2) ,

where C1, C2, and C3 are given in (7)–(9).

Proof. Fix y and note that the properties of projection mappings (Brockwell and Davis, 1991,
Proposition 2.3.2 and Chapter 2.7) allow us to decompose 1{Yi(1)≤y} into

1{Yi(1)≤y} = E
(
1{Yi(1)≤y}|Si

)
+ εi,1(y), with E(εi,1(y)|Si) = 0 , (B.1)

1 ≤ i ≤ N . Moreover, observe that

E
(
1{Yi(1)≤y}|Si

)
= E

(
E(1{Yi(1)≤y}|Zi)|Si

)
= E

(
F1(y|Zi)|Si

)
,

where the first inequality follows by the tower property of conditional expectations and the fact
Si is a function of Zi. Denote

m1(y, Zi) = F1(y|Zi)− F1(y) (B.2)

m0(y, Zi) = F0(y|Zi)− F0(y) . (B.3)

Plug m1(y, Zi) into equation (B.1) to obtain 1{Yi(1)≤y} = E (m1(y, Zi)|Si) + F1(y) + εi,1(y).
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Repeat the same argument with Yi(1) replaced by Yi(0). Then MN,2(y) can be written as

MN,2(y) = 1√
N

N∑
i=1

{
(1− λ)

(
1{Yi(1)≤y} − F1(y)

)
Ai − λ

(
1{Yi(0)≤y} − F0(y)

)
(1− Ai)

}

= 1√
N

N∑
i=1

{
(1− λ)

(
E (m1(y, Zi)|Si) + εi,1(y)

)
Ai − λ

(
E (m0(y, Zi)|Si) + εi,0(y)

)
(1− Ai)

}

= 1√
N

N∑
i=1

{
(1− λ)εi,1(y)Ai − λ εi,0(y)(1− Ai)

}

+ 1√
N

N∑
i=1

{
(1− λ)E (m1(y, Zi)|Si)Ai − λE (m0(y, Zi)|Si) (1− Ai)

}
.

Expand the second summand and rearrange

MN,2(y) = 1√
N

N∑
i=1

{
(1− λ)εi,1(y)Ai − λ εi,0(y)(1− Ai)

}

+ 1√
N

N∑
i=1

{
Ai

(
(1− λ)E (m1(y, Zi)|Si) + λE (m0(y, Zi)|Si)

)
− λE (m0(Zi)|Si)

}
.

We add the following zero

λ

(
N∑
i=1

(1− λ)
(
E (m1(y, Zi)|Si)− E (m1(y, Zi)|Si)

)
+ λ

(
E (m0(y, Zi)|Si)− E (m0(y, Zi)|Si)

))

to the second summand of MN,2 to obtain

MN,2(y) = 1√
N

N∑
i=1

{
(1− λ)εi,1(y)Ai − λ εi,0(y)(1− Ai)

}

+ 1√
N

N∑
i=1

(Ai − λ)
(

(1− λ)E (m1(y, Zi)|Si) + λE (m0(y, Zi)|Si)
)

+ 1√
N

N∑
i=1

λ(1− λ)
(
E (m1(y, Zi)|Si)− E (m0(y, Zi)|Si)

)
.

If we see E (ma(y, Zi)|Si), for a ∈ {0, 1}, as a function E (ma(y, Zi)|·) defined on S and extended
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to R, we can compose it with Si and get

E (ma(y, Zi)|Si) =
∑
s∈S

E (ma(y, Zi)|Si = s)1{Si=s} .

Therefore,

MN,2(y) = 1√
N

N∑
i=1

{
(1− λ)εi,1(y)Ai − λεi,0(y)(1− Ai)

}

+ 1√
N

N∑
i=1

(Ai − λ)
(∑
s∈S

(1− λ)E (m1(y, Zi)|Si = s)1{Si=s}

+
∑
s∈S

λE (m0(y, Zi)|Si = s)1{Si=s}
)

+ λ(1− λ)√
N

N∑
i=1

(
E (m1(y, Zi)|Si)− E (m0(y, Zi)|Si)

)

= GN,1(y) +GN,2(y) +GN,3(y) ,

where

GN,1(y) = 1√
N

N∑
i=1

{
(1− λ)εi,1(y)Ai − λεi,0(y)(1− Ai)

}
(B.4)

GN,2(y) = 1√
N

N∑
i=1

(Ai − λ)
(∑
s∈S

(1− λ)E (m1(y, Zi)|Si = s)1{Si=s}

+
∑
s∈S

λE (m0(y, Zi)|Si = s)1{Si=s}
)

(B.5)

GN,3(y) = λ(1− λ)√
N

N∑
i=1

(
E (m1(y, Zi)|Si)− E (m0(y, Zi)|Si)

)
. (B.6)

The result follows immediately from Lemma B.2 and the continuous mapping theorem, finishing
the proof of Lemma.

Lemma B.2. Suppose assumptions A.1 and A.2 hold. Let GN,1(·), GN,2(·), and GN,3(·) defined
as in (B.4)-(B.6), respectively. Then, (GN,1, GN,2, GN,3) (·) converges weakly in `∞(F ) under
the null hypothesis to a tight Gaussian process (G1,G2,G3) (·) where its marginals G1(·), G2(·),
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and G3(·) are mutually independent, zero-mean Gaussian processes with covariance structure
given by Eqs. (7)–(9), respectively.

Proof. The proof of the Lemma essentially follows the same construction from Bugni, Canay,
and Shaikh (2018, Lemma B.2), extending their results to the uniform case (See also Zhang
and Zheng, 2020, Lemma E.2). We separate the proof into three steps.

Step 1. We begin the proof of the Lemma by showing the following asymptotic expansion

(GN,1, GN,2, GN,3) (·) d=
(
G∗N,1, GN,2, GN,3

)
(·) + op(1) (B.7)

holds uniformly over y ∈ R, and the process G∗N,1—to be defined shortly—i) is independent of
both GN,2 and GN,3, and ii) weakly converges to G1(·) with covariance structure given in (7).
We break down the proof of the asymptotic representation (B.7) into two steps.

Step 1.a. We first construct an auxiliary stochastic process G̃N,1 that is stochastically equiv-
alent to GN,1 in the wide sense i.e. they have the same finite-dimensional distributions. Let

εsi,1(y) = 1{Y si (1)≤y} − E
(
1{Yi(1)≤y}|Si = s

)
εsi,0(y) = 1{Y si (0)≤y} − E

(
1{Yi(0)≤y}|Si = s

)
where, independently for each s ∈ S and independently of (AN ,SN), {Y s

i (1), Y s
i (0) : 1 ≤ i ≤

N} are i.i.d. with marginal distribution equal to the distribution of (Yi(1), Yi(0))|Si = s.

For each s let NN(s) ≡ ∑N
i=1 1{Si<s}. The auxiliary process G̃N,1 is given by

G̃N,1(y) ≡
∑
s∈S

 1√
N

NN (s)+m(s)∑
i=NN (s)+1

(1− λ)εsi,1(y)− 1√
N

NN (s)+m(s)+n(s)∑
i=NN (s)+m(s)+1

λεsi,0(y)

 . (B.8)

Intuitively, the auxiliary process G̃N,1 orders units by strata, and then by Ai = 1 first and
Ai = 0 second within strata. This construction—combined with the i.i.d. assumption on data
and assumption A.2 (a)—ensures the distribution of GN,1 is the same as G̃N,1, since

{
GN,1(y)|{Ai, Si}Ni=1

} d=
{
G̃N,1(y)|{Ai, Si}Ni=1

}
.
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Moreover, since GN,2(·) and GN,3(·) are both functions of {Ai, Si}Ni=1 then

(
GN,1(y), GN,2(y), GN,3(y)

) d=
(
G̃N,1(y), GN,2(y), GN,3(y)

)
.

Step 1.b. We further define a process G∗N,1 that, 1) converges weakly to a tight Gaussian
process with mean 0 and covariance structure as in (7) and, 2) satisfies

sup
y

∣∣∣G̃N,1(y)−G∗N,1(y)
∣∣∣ P→ 0 (B.9)

G∗N,1(·) ⊥⊥ (GN,2, GN,3)(·) , (B.10)

where G∗N,1(·) is given by

G∗N,1(y) ≡
∑
s∈S

 1√
N

bN(N (s)+λp(s))c∑
i=bN N (s)c+1

(1− λ)εsi,1(y)− 1√
N

bN(N (s)+p(s))c∑
i=bN(N (s)+λp(s))c+1

λεsi,0(y)

 , (B.11)

for N (s) ≡ P{Si < s} for all s ∈ S . Weak convergence of G∗N,1 follows from Lemma B.3,
whereas condition (B.9) holds by Lemma B.4. Lastly, the independence condition in (B.10)
holds because G∗N,1(·) depends on {Y s

i (1), Y s
i (0)}Ni=1 only, which is independent of {Ai, Si}Ni=1

by construction.

Combining Steps 1.a–1.b imply the asymptotic representation (B.7) holds.

Step 2. We now show the weak limits of GN,2 and GN,3. More specifically, we will show that
GN,2 and GN,3 weakly converge to zero-mean Gaussian processes G2 and G3 with covariance
structure as in (8)–(9). Consider GN,2 first. Observe we can rewrite it as

GN,2(y) =
∑
s∈S

N∑
i=1

(Ai − λ)√
N

1{Si=s}

(
(1− λ)E (m1(y, Zi)|Si = s) + λE (m0(y, Zi)|Si = s)

)

=
∑
s∈S

DN(s)√
N

(
(1− λ)E (m1(y, Zi)|Si = s) + λE (m0(y, Zi)|Si = s)

)
,

where mj(y, Zi), j ∈ {0, 1} is given by equations (B.2)–(B.3). Fix y and observe that Assump-
tion A.2 implies that GN,2(y)|SN converges in distribution to a multivariate normal distribution
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with mean zero and covariance

∑
s∈S

p(s) τ(s)
(

(1− λ)E (m1(y, Zi)|S1 = s) + λE (m0(y, Zi)|S1 = s)
)2

. (B.12)

Let E = {F0(y|S) : y ∈ R} with constant envelope function C and bounded L1-bracketing
numbers of size 2ε‖C‖. Then GN,2(·), seen as a random function on `∞(E ), converges weakly—
conditionally on {Si}Ni=1—to a process G2 under the null hypothesis. Here G2 is a tight Gaussian
process with mean zero and covariance structure given by

C2(y1, y2) =
∑
s∈S

p(s) τ(s)
(

(1− λ)2 E (m1(y1, Zi)|S1 = s)E (m1(y2, Zi)|S1 = s)

+ λ(1− λ)E (m1(y1, Zi)|S1 = s)E (m0(y2, Zi)|S1 = s)

+ λ(1− λ)E (m1(y2, Zi)|S1 = s)E (m0(y1, Zi)|S1 = s)

+ λ2 E (m0(y1, Zi)|S1 = s)E (m0(y2, Zi)|S1 = s)
)
.

Similarly, GN,3(·) converges weakly in `∞(E ) to a process G3 under the null hypothesis. Here
G3 is a tight Gaussian process with mean zero and covariance structure given by

C3(y1, y2) = λ2(1− λ)2 ∑
s∈S

p(s)
(
E[m1(y1, Z)|S = s]E[m1(y2, Z)|S = s]

+ E[m0(y1, Z)|S = s]E[m0(y2, Z)|S = s]− 2E[m1(y1, Z)|S = s]E[m0(y2, Z)|S = s]
)
.

Step 3. Lastly, we show that
(
G∗N,1, GN,2, GN,3

)
(·) weakly converges to a process (G1,G2,G3) (·)

where its marginals G1(·), G2(·), and G3(·) are mutually independent. In what follows we
consider fixed y but the results carry over by the Cramér–Wold device if we instead fix
y1, . . . , yk ∈ R, k ∈ N.

By the Cramér–Wold device (Van der Vaart, 2000, Section 2.3), and the marginal conver-
gence of Steps 1–2, we have that

(
G∗N,1(y), GN,2(y), GN,3(y)

) d→ (G1(y),G2(y),G3(y))

jointly in finite dimension, where G1(y), G2(y), and G3(y) are given as before. Steps 1–2
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imply that G∗N,1(·), GN,2(·), and GN,3(·) are—individually—asymptotically equicontinuous by
Prohorov’s theorem (Van der Vaart, 2000, Theorem 18.2). Consequently,

(
G∗N,1, GN,2, GN,3

)
(·)

is—jointly—asymptotically equicontinuous and then
(
G∗N,1, GN,2, GN,3

)
(·) weakly converges to

(G1,G2,G3) (·) by Van der Vaart and Wellner (1996, Theorem 1.5.4).

In a similar fashion as above, note that for any fixed y,

P
(
G∗N,1(y) ≤ t1, GN,2(y) ≤ t2, GN,3(y) ≤ t3

)
= P

(
G∗N,1(y) ≤ t1

)
P
(
GN,2(y) ≤ t2, GN,3(y) ≤ t3

)
by the asymptotic representation in (B.7). Observe that

P (GN,2(y) ≤ t2, GN,3(y) ≤ t3) = E
{
E
(
1{GN,2(y)≤t2}1{GN,3(y)≤t3}|SN

)}
= E

{
P (GN,2(y) ≤ t2|SN)1{GN,3(y)≤t3}

}
= E

{
[P (GN,2(y) ≤ t2|SN)− P (G2(y) ≤ t2)]1{GN,3(y)≤t3}

}
+ E

{
P (G2(y) ≤ t2)1{GN,3(y)≤t3}

}
(B.13)

Consider two cases. First, if P (G1(y) ≤ ·), P (G2(y) ≤ ·), and P (G3(y) ≤ ·) are continuous
at t1,t2, and t3 respectively for fixed y, then the weak convergence results of Steps 1–2, and
dominated convergence theorem (Williams, 1991, Theorem 5.9) applied to (B.13), allow us to
conclude

P
(
G∗N,1(y) ≤ t1

)
P (GN,2(y) ≤ t2, GN,3(y) ≤ t3)→ P (G1(y) ≤ t1)P (G2(y) ≤ t2)P (G3(y) ≤ t3) .

(B.14)

The same conclusion follows if we now consider the case when P (G1(y) ≤ ·), P (G2(y) ≤ ·),
and P (G3(y) ≤ ·) are discontinuous for some t1,t2, and t3—repeat the same argument as in
the proof of Lemma B.2 in Bugni, Canay, and Shaikh (2018) combined with the fact that the
processes G1, G2, and G3 are Gaussian.

Complete the argument as for the weak convergence above, i.e., invoke asymptotic equicon-
tinuity of

(
G∗N,1, GN,2, GN,3

)
(·) and (B.14) to conclude that the marginals G1(·), G2(·), and

G3(·) are mutually independent. This finishes the proof of Lemma.

Lemma B.3. Suppose assumptions A.1 and A.2 hold. Then G∗N,1(·) defined in (B.11) weakly
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converges in `∞ ([0, 1]×F ) under the null hypothesis to G1, a tight Gaussian process with mean
zero and covariance structure given by

C(G1(y1),G1(y2)) = λ(1− λ) (F0(y1 ∧ y2)− F0(y1)F0(y2)) .

Proof. The proof is based on the partial-sum representation of the process G∗N,1(·) (Van der
Vaart and Wellner, 1996, Chapter 2.12). Let ∪s∈Sχs be a partition of the sample space into
lower rectangles in R corresponding to strata s ∈ S , and let Fs be the class of functions
f1{χs} when f ranges over F . Since the class F is Donsker—its bracketing numbers are of the
polynomial order (1/ε)2)—then each class Fs is Donsker (Van der Vaart and Wellner, 1996,
Theorem 2.10.6).

Consider the following partial-sum process—also known as sequential empirical process—
given by

ZN,1(t, εs1(y), s) = 1√
N

bNtc∑
i=1

(1− λ)εsi,1(y)

= (1− λ)
√
bNtc
N

GbNtc εs1(y) , bNλp(s)c
N

≤ t ≤ bNλp(s)c+1
N

. (B.15)

Since the class Fs is Donsker, then Van der Vaart and Wellner (1996, Theorem 2.12.1)
implies that ZN,1 weakly converges in `∞ ([0, 1]×Fs) to a tight Gaussian process Z1—the
Kiefer–Müller process. This process has mean zero and covariance structure

C(Z1(t1, y1, s),Z1(t2, y2, s) = (1− λ)2(t1 ∧ t2) (F1(y1 ∧ y2)− F1(y1)F1(y2)) . (B.16)

In particular, (B.16) reduces to λ p(s)(1− λ)2 (F0(y1 ∧ y2)− F0(y1)F0(y2)) for t1 = t2 = λ p(s).
Repeating an analogous argument for εsi,0(y) we can conclude that ZN,0 weakly converges in
`∞ ([0, 1]×Fs) to another Kiefer–Müller process Z0 with mean zero and covariance structure

C(Z0(t1, y1, s),Z0(t2, y2, s) = λ2(1− λ)p(s) (F0(y1 ∧ y2)− F0(y1)F0(y2)) . (B.17)

Exploiting the fact that the finite union of Donsker classes—across s ∈ S , and experimental
groups—is Donsker too, then we conclude that G∗N,1(·) defined in (B.11) weakly converges to a
tight Gaussian process G1—the two-sample version of the Kiefer–Müller process—with mean
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zero and covariance structure under the null hypothesis given by

C(G1(y1),G1(y2)) = λ(1− λ)
(
λ {F1(y1 ∧ y2)− F1(y1)F1(y2)}

+ (1− λ) {F0(y1 ∧ y2)− F0(y1)F0(y2)}
)

(B.18)

= λ(1− λ)F0(y1 ∧ y2)− F0(y1)F0(y2) ,

where in the last equality we have used the fact that F0 = F1 holds under the null hypothesis
F0 = F1. This finishes the proof.

Lemma B.4. Suppose assumptions A.1 and A.2 hold. Then

sup
y

∣∣∣G̃N,1(y)−G∗N,1(y)
∣∣∣ P→ 0 .

where the processes G̃N,1 and G∗N,1 are given by equations (B.8) and (B.11), respectively.

Proof. In view of Markov’s inequality, it suffices to show

E
(

sup
y

∣∣∣G̃N,1(y)−G∗N,1(y)
∣∣∣)→ 0 . (B.19)

To this end, fix y and an arbitrary s ∈ S . Consider the following expression
m(s)∑
i=1

εsi,1(y)−
bNλp(s)c∑
i=1

εsi,1(y)

−

m(s)+n(s)∑
i=m(s)+1

εsi,0(y)−
bNp(s)c∑

i=bNλp(s)c+1
εsi,0(y)

 , (B.20)

and focus on the first summand between braces. By construction m(s) is distributed as a
binomial B(N, λp(s)). Therefore

P (|m(s)− bNλp(s)c| ≥ N) = P (m(s) ≤ bNλp(s)c −N)− P (m(s) ≤ N + bNλp(s)c)

≤ exp
{
−2

(
N + 2 + 1

N

)}
− exp

{
−2

(
N − 2− 1

N

)}

by Hoeffding’s Inequality (Pollard, 1984, Appendix B). We reach a similar conclusion for the
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second summand between braces using the same argument. Then, (B.20) can be formulated as

m(s)∑
i=1

εsi,1(y)−
bNλp(s)c∑
i=1

εsi,1(y)

−

m(s)+n(s)∑
i=m(s)+1

εsi,0(y)−
bNp(s)c∑

i=bNλp(s)c+1
εsi,0(y)

 =
r1,m(s)∑
i=1

εsi,1(y)−
r0,n(s)∑
i=1

εsi,0(y)

with r1,m(s) and r0,m(s) two integer-valued random variables such that r1,m(s) P→ 0, r0,n(s) P→ 0,
as N →∞. Building on this result, we obtain

G̃N,1(y)−G∗N,1(y) =
∑
s∈S

 1√
N

r1,m(s)∑
i=1

(1− λ)εsi,1(y)− 1√
N

r0,n(s)∑
i=1

λεsi,0(y)

 .

Combine the weak convergence result of Lemma B.3 with the fact that r1,m(s) P→ 0 and r0,n(s) P→ 0
to conclude that the process

(
G̃N,1 −G∗N,1

)
(·) weakly converges to zero by Durrett and Resnick

(1977, Theorem 3). Then (B.19) follows by Van der Vaart and Wellner (1996, Lemma 2.3.11),
thus finishing the proof.

Lemma B.5. Suppose assumptions A.1 and A.2 hold. Then

sup
y

∣∣∣∣∣ 1
N

N∑
i=1

((
1{Yi(1)≤y} − F1(y)

)
Ai +

(
1{Yi(0)≤y} − F0(y)

)
(1− Ai)

)∣∣∣∣∣ P→ 0 . (B.21)

Proof. For notational convenience, write

ΨN(y) = 1
N

N∑
i=1

(
1{Yi(1)≤y} − F1(y)

)
Ai .

Arguing as in the proof of Bugni, Canay, and Shaikh (2018, Lemma B.3), independently for
each s ∈ S and (AN ,SN), let {(Y s

i (1), Y s
i (0)) : 1 ≤ i ≤ N} be i.i.d. with marginal distribution

equal to the distribution of (Yi(1), Yi(0))|Si = s. Note that

ΨN(y) d=
∑
s∈S

m(s)
N

 1
m(s)

m(s)∑
i=1

(
1{Y si (1)≤y} − F1(y)

) .
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To show that ΨN(y ) P→ 0 uniformly over y ∈ R, it suffices to establish for any ε > 0

P

sup
y

∣∣∣∣∣∣ 1
m(s)

m(s)∑
i=1

(
1{Y si (1)≤y} − F1(y)

)∣∣∣∣∣∣ > ε

→ 0 .

The almost sure representation theorem (Van der Vaart, 2000, Theorem 2.19) allows us to
construct a sequence m̃(s)/N d=m(s)/N with m̃(s)/N a.s.→ λp(s) > 0 as N → ∞. Then, using
the independence of (AN ,SN) and {1{Y si (1)≤y} : 1 ≤ i ≤ N}, we see that for any ε > 0,

P

sup
y

∣∣∣∣∣∣ 1
m(s)

m(s)∑
i=1

1{Y si (1)≤y}

∣∣∣∣∣∣ > ε

 = P

sup
y

∣∣∣∣∣∣ 1
m̃(s)

m̃(s)∑
i=1

1{Y si (1)≤y}

∣∣∣∣∣∣ > ε


= E

P
sup

y

∣∣∣∣∣∣ 1
m̃(s)

m̃(s)∑
i=1

1{Y si (1)≤y}

∣∣∣∣∣∣ > ε

∣∣∣∣∣∣ m̃(s)


 . (B.22)

Let ∪s∈Sχs be a partition of the sample space into lower rectangles in R corresponding to strata
s ∈ S , and let Fs be the class of functions f1{χs} when f ranges over F . Since the class F

is Donsker then each class Fs is Donsker (Van der Vaart and Wellner, 1996, Theorem 2.10.6).
Then for fixed m,

sup
y

∣∣∣∣∣ 1
m

m∑
i=1

(
1{Y si (1)≤y} − F1(y)

)∣∣∣∣∣ P→ 0 (B.23)

by Glivenko–Cantelli theorem. The independence of m̃(s) and {1{Y si (1)≤y} : 1 ≤ i ≤ N}, and
(B.23) imply that

P

sup
y

∣∣∣∣∣∣ 1
m̃(s)

m̃(s)∑
i=1

1{Y si (1)≤y}

∣∣∣∣∣∣ > ε

∣∣∣∣∣∣ m̃(s)

 = P

sup
y

∣∣∣∣∣∣ 1
m̃(s)

m̃(s)∑
i=1

1{Y si (1)≤y}

∣∣∣∣∣∣ > ε

→ 0 , (B.24)

by (B.23) and Van der Vaart and Wellner (1996, Theorem 3.5.1). The desired conclusion follows
by (B.24) and a direct application of dominated convergence theorem (Williams, 1991, Theorem
5.9) to (B.22). Apply the same reasoning to the second summand in (B.21) to conclude

sup
y

∣∣∣∣∣ 1
N

N∑
i=1

((
1{Yi(0)≤y} − F0(y)

)
(1− Ai)

)∣∣∣∣∣ P→ 0 .

Triangle inequality yields the desired result.
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Lemma B.6. Suppose assumptions A.1 and A.2 hold. If (ω1, . . . , ωN) are weights satisfying
Assumption 3. then, conditionally on data, Mω

N,2(·) converges weakly in `∞(F ) to a tight
Gaussian under the null hypothesis. The limit process has mean 0 and covariance structure
given by

C(y1, y2) = C1(y1, y2) + C2(y1, y2) + C3(y1, y2) ,

where C1, C2, and C3 are given in (7)–(9).

Proof. The lemma is proved by mirroring the arguments used in the proofs of Lemmas B.1–B.2,
so we omit some details. In fact, arguing as in Lemma B.1, we can show that

Mω
N,2(y) = Gω

N,1(y) +Gω
N,2(y) +Gω

N,3(y) ,

where

Gω
N,1(y) = 1√

N

N∑
i=1

{
(1− λ)(ωi − 1)εi,1(y)Ai − λ(ωi − 1)εi,0(y)(1− Ai)

}
(B.25)

Gω
N,2(y) = 1√

N

N∑
i=1

(Ai − λ)
(∑
s∈S

(1− λ)(ωi − 1)E (m1(y, Zi)|Si = s)1{Si=s}

+
∑
s∈S

λ(ωi − 1)E (m0(y, Zi)|Si = s)1{Si=s}
)

(B.26)

Gω
N,3(y) = λ(1− λ)√

N

N∑
i=1

(ωi − 1)
(
E (m1(y, Zi)|Si)− E (m0(y, Zi)|Si)

)
. (B.27)

We break the proof of the lemma into three steps as used in the proof of Lemma B.2.

Step 1. We begin by showing the follow asymptotic expansion

(
Gω
N,1, G

ω
N,2, G

ω
N,3

)
(·) d=

(
G∗,ωN,1, G

ω
N,2, G

ω
N,3

)
(·) + op(1) (B.28)

holds uniformly over y ∈ R, and the process G∗,ωN,1—to be defined shortly—i) is independent of
both Gω

N,2 and Gω
N,3, and ii) converges weakly to G1(·) conditionally on data and its covariance

structure is given in (7). We break down the proof of the asymptotic representation (B.28) into
two steps.

Step 1.a. For fixed y, set εsi,1(y) and εsi,0(y) as in Step 1.a in the proof of Lemma B.2, and
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define the auxiliary process G̃ω
N,1 by

G̃N,1(y) ≡
∑
s∈S

 1√
N

NN (s)+m(s)∑
i=NN (s)+1

(1− λ)(ωi − 1)εsi,1(y)− 1√
N

NN (s)+m(s)+n(s)∑
i=NN (s)+m(s)+1

λ(ωi − 1)εsi,0(y)

 .

(B.29)

This construction—combined with the i.i.d. assumption on data and Assumption 2 i)—ensures
the distribution of Gω

N,1 is the same as G̃ω
N,1 since

{
Gω
N,1(y)|{Ai, Si}Ni=1

} d=
{
G̃ω
N,1(y)|{Ai, Si}Ni=1

}
.

Moreover, since Gω
N,2(·) and Gω

N,3(·) are both functions of {Ai, Si}Ni=1 then

(
Gω
N,1(y), Gω

N,2(y), Gω
N,3(y)

) d=
(
G̃ω
N,1(y), Gω

N,2(y), Gω
N,3(y)

)
.

Step 1.b. We further define the process G∗,ωN,1 as

G∗,ωN,1(y) ≡
∑
s∈S

 1√
N

bN(N (s)+λp(s))c∑
i=bN N (s)c+1

(1− λ)(ωi − 1)εsi,1(y)− 1√
N

bN(N (s)+p(s))c∑
i=bN(N (s)+λp(s))c+1

λ(ωi − 1)εsi,0(y)

 ,

(B.30)

where N (s) ≡ P{Si < s} for all s ∈ S , and observe that it 1) converges weakly to a tight
Gaussian process with mean 0 and covariance structure as in (7) given data, in probability;
and, 2) satisfies

sup
y

∣∣∣G̃ω
N,1(y)−G∗,ωN,1(y)

∣∣∣ P→ 0 (B.31)

G∗ωN,1(·) ⊥⊥ (Gω
N,2, G

ω
N,3)(·) . (B.32)

Conditional weak convergence in probability of G∗,ωN,1 follows from Lemma B.7, whereas condi-
tion (B.31) holds by Lemma B.8. Finally, the independence condition in (B.32) holds because
G∗,ωN,1(·) depends on {Y s

i (1), Y s
i (0)}Ni=1 only, which is independent of {Ai, Si}Ni=1 by construction.

Combining Steps 1.a–1.b imply the asymptotic representation (B.28) holds.

Step 2. We now show the conditional weak limits of Gω
N,2 and Gω

N,3. More specifically, we will
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show that Gω
N,2 and Gω

N,3 weakly converge to zero-mean Gaussian processes G2 and G3 with
covariance structure as in (8)–(9). Consider Gω

N,2 first, and note that

Gω
N,2(y) =

∑
s∈S

Dω
N(s)√
N

(
(1− λ)E (m1(y, Zi)|Si = s) + λE (m0(y, Zi)|Si = s)

)
,

where mj(y, Zi), j ∈ {0, 1} is given by equations (B.2)–(B.3), and Dω
N(s) is

Dω
N(s) =

N∑
i=1

(ωi − 1)(Ai − λ)1{Si=s}, s ∈ S .

Fix y and observe that assumptions A.2 and A.3 imply that Gω
N,2(y)|SN converges in distribu-

tion, conditionally on data, to a multivariate normal distribution with mean zero and covariance

∑
s∈S

p(s) τ(s)
(

(1− λ)E (m1(y, Zi)|S1 = s) + λE (m0(y, Zi)|S1 = s)
)2

for almost all sequences (Y1, A1, Z1), (Y2, A2, Z2), . . . , by Van der Vaart and Wellner (1996,
Lemma 2.9.5). The preceding result takes care of conditional marginal convergence in proba-
bility.

For conditional weak convergence, it suffices to check asymptotic equicontinuity in terms of
conditional laws. In view of Van der Vaart and Wellner (1996, Theorem 2.9.6), we need to verify
the assumptions of the conditional multiplier central limit theorem. Let E = {F0(y|S) : y ∈ R}
with constant envelope function C and bounded L1-bracketing numbers of size 2ε‖C‖, so E

is Donsker. Moreover, under our assumptions, the weights {ωi − 1 : 1 ≤ i ≤ N} are i.i.d.
random variables with mean 0 and variance 1, satisfying condition A.3. Then Gω

N,2(·), seen as
a random function on `∞(E ), converges weakly to a process G2 given data, in probability (see
also Van der Vaart and Wellner (1996, Theorem 3.6.13)).

By the same reasoning, Gω
N,3(·) given in (B.27) converges weakly in `∞(E ) to a process G3

given data, in probability. Here G3 is a tight Gaussian process with mean zero and covariance
structure given by (9).

Step 3. Lastly, we show that
(
G∗,ωN,1, G

ω
N,2, G

ω
N,3

)
(·) weakly converges to a process (G1,G2,G3) (·)

where its marginals G1(·), G2(·), and G3(·) are mutually independent. This step is proved by
the same arguments as used in the proof of Step 3, Lemma B.2, and the fact that the weights
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(ω1, . . . , ωN) are independent of data. This finishes the proof of the Lemma.

Lemma B.7. Suppose assumptions A.1 and A.2 hold. If (ω1, . . . , ωN) are weights satisfying
Assumption 3, then G∗,ωN,1(·) defined in (B.30) converges weakly in `∞ ([0, 1]×F ) to G1 given
data, in probability. Here G1 is a tight Gaussian process with mean zero and covariance structure
given by

C(G1(y1),G1(y2)) = λ(1− λ) (F0(y1 ∧ y2)− F0(y1)F0(y2)) .

Proof. The proof resembles that of Lemma (B.3), so we omit some details. Set Fs as in the
proof of Lemma (B.3), and consider the process

{
1√
N

N∑
i=1

(1− λ)(ωi − 1)(εsi,1(y)) : y ∈ R
}
. (B.33)

Under our assumptions, the marginals of (B.33) converge weakly, conditional on data, to
the marginals of normally distributed random variable with mean zero and covariance (1 −
λ)2F0(y)(1 − F0(y)) by the conditional multiplier central limit theorem (Van der Vaart and
Wellner, 1996, Lemma 2.9.5). For conditional weak convergence in `∞ (Fs) in probability, it
suffices to check asymptotic equicontinuity of (B.33). This follows automatically under our
assumptions and Van der Vaart and Wellner (1996, Theorem 2.9.6).

With this in mind, we can now establish conditional weak convergence of G∗,ωN,1(·) in proba-
bility. As in Lemma (B.3), the proof is based on its partial-sum representation,

ZωN,1(t, εs1(y), s) = (1− λ)
√
bNtc
N

 1√
bNtc

bNtc∑
i=1

(ωi − 1)εsi,1(y)

 , bNλp(s)c
N

≤ t ≤ bNλp(s)c+1
N

.

Since the class Fs is Donsker, then Van der Vaart and Wellner (1996, Theorem 2.12.1) implies
that ZωN,1 converges weakly in `∞ ([0, 1]×Fs), conditional on data, to the Kiefer–Müller process
of Lemma B.3.

Repeating an analogous argument for εsi,0(y) and using the fact that the finite union of
Donsker classes—across s ∈ S , and experimental groups—is Donsker too, we can conclude that
G∗,ωN,1(·) converges weakly, conditional on data, to a tight Gaussian process G1 in probability,
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where G1 has mean zero and covariance structure as in (7). This finishes the proof.

Lemma B.8. Suppose assumptions A.1 and A.2 hold. If (ω1, . . . , ωN) are weights satisfying
Assumption 3, then

sup
y

∣∣∣G̃ω
N,1(y)−G∗,ωN,1(y)

∣∣∣ P→ 0 ,

conditionally on data, where the processes G̃ω
N,1 and G∗,ωN,1 are given by equations (B.29) and

(B.30), respectively.

Proof. In view of Markov’s inequality, it suffices to verify

E
(

sup
y

∣∣∣G̃ω
N,1(y)−G∗,ωN,1(y)

∣∣∣)→ 0 , (B.34)

conditionally on data. Arguing as in the proof of Lemma B.4, we can show that

G̃ω
N,1(y)−G∗,ωN,1(y) =

∑
s∈S

 1√
N

r1,m(s)∑
i=1

(1− λ)(ωi − 1)εsi,1(y)− 1√
N

r0,n(s)∑
i=1

λ(ωi − 1)εsi,0(y)

 ,

with r1,m(s) and r0,m(s) two integer-valued random variables such that r1,m(s) P→ 0, r0,n(s) P→ 0,
as N → ∞. Combine the conditional weak convergence in probability result of Lemma B.7
with the fact that r1,m(s) P→ 0 and r0,n(s) P→ 0 to conclude that the process

(
G̃ω
N,1 −G

∗,ω
N,1

)
(·)

weakly converges to zero by Durrett and Resnick (1977, Theorem 3). Then (B.34) follows by
Van der Vaart and Wellner (1996, Lemma 2.3.11). This finishes the proof.

Lemma B.9. Suppose assumptions A.1 and A.2 hold. If (ω1, . . . , ωN) are weights satisfying
Assumption 3, then

sup
y

∣∣∣∣∣ 1
N

N∑
i=1

(ωi − 1)
((
1{Yi(1)≤y} − F1(y)

)
Ai +

(
1{Yi(0)≤y} − F0(y)

)
(1− Ai)

)∣∣∣∣∣ P→ 0 . (B.35)

Proof. The proof is essentially the same as the proof of Lemma (B.5), so we omit some details.
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Consider

Ψω
N(y) = 1

N

N∑
i=1

(ωi − 1)
(
1{Yi(1)≤y} − F1(y)

)
Ai

d=
∑
s∈S

m(s)
N

 1
m(s)

m(s)∑
i=1

(ωi − 1)
(
1{Yi(1)≤y} − F1(y)

) .

The rest of the proof is the same as Lemma (B.5), except that the convergence result in (B.23)
now becomes

sup
y

∣∣∣∣∣ 1
m

m∑
i=1

(ωi − 1)
(
1{Yi(1)≤y} − F1(y)

)∣∣∣∣∣ P→ 0 ,

and follows by Van der Vaart and Wellner (1996, 2.9.2) instead. This finishes the proof.

C Examples of CAR Schemes

Example 1. (Simple Randomization) Simple randomization refers to the case when every
sequence of treatment assignments is equally likely. More formally, AN consists of N i.i.d.
random variables with

P{Ak = 1|Sk,Ak−1} = P{Ak = 1} = λ

for 1 ≤ k ≤ N . Note that E(DN(s)) = 0 for all s ∈ S .

Example 2. (Covariate-Adaptive Biased-coin Design) (Efron, 1971)’s biased-coin design is
given by:

P{Ak = 1|Sk,Ak−1} =


1/2 Dk−1(Sk) = 0

γ Dk−1(Sk) < 0

1− γ Dk−1(Sk) > 0

,

where Dk−1(Sk) = ∑k−1
i=1 (Ai − 1/2)1{Si=Sk}, γ > 1/2, D0(S1) = 0. Efron’s original biased-coin

design does not make use of any covariate Zi, so it cannot be considered a CAR scheme in
strict sense. However, one may ensure it is a CAR scheme if we apply it within each stratum Si

(Shao, Yu, and Zhong, 2010; Pocock and Simon, 1975). It improves balance relative to simple
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randomization.

Example 3. (Adaptive Biased-coin Design) Due to Wei (1978), this CAR scheme is similar to
Efron’s biased-coin design and it is given by

P{Ak = 1|Sk,Ak−1} = ϕ

(
Dk−1(Sk)
k − 1

)
,

where ϕ(x) : [0, 1]→ [0, 1] is a pre-specified function satisfying ϕ(−x) = 1− ϕ(x).

Example 4. (Stratified Block Randomization) For s ∈ S , denote N(s) = ∑
1≤i≤N 1{Si = s},

and m(s) and n(s) as before. In this randomization scheme all possible assignments in stratum
s ∈ S , N(s)

m(s)

 ,

are equally likely, and treatment across strata are independent. If m(s) = bλN(s)c, then
|DN(s)| ≤ 1 for all s ∈ S . See (Zelen, 1974; Rosenberger and Lachin, 2015) for discussion.

Example 5. (Sequential Randomization Algorithm) This design, due to Hu and Hu (2012),
allows for dependence on multiple strata, and assigns treatment in a recurrent fashion:

P{Ak = 1|Sk,Ak−1} =


λ Imbk = 0

γ Imbk < 0

1− γ Imbk > 0

,

where Imbk =Imb(Sk,Ak−1) is defined in the main text, and γ > λ. Imbk is a weighted average
of three types of discrepancies: overall, marginal, and within-stratum.

D Coupling Construction under CAR

Let S = |S | <∞ be the total number of strata. Denote Y1,i = Yi among the treated, and Y0,i =
Yi among the non-treated, and collect all these outcomes in one vector as X̃ = (X1, . . . , XS),
where each Xs, 1 ≤ s ≤ S represents the observed data for stratum s and is given by

Xs =
(
Xs,1, . . . , Xs,N(s)

)
=
(
Y1,s1 , . . . , Y1,sm(s) , Y0,s1 , . . . , Y0,sn(s)

)
.
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The idea behind the coupling argument in Chung and Romano (2013) is that the behavior of
the permutation distribution based on X̃ should behave approximately like the permutation
distribution based on a sample of N i.i.d. observations X̄ = (X̄1, . . . , X̄N) from the mixture
distribution P̄ , where P̄ (y) = ∑

s∈S p(s){λF1(y|S = s) + (1− λ)F0(y|S = s)}.

Except for ordering, we can construct X̄ to include almost the same set of observations
as in X̃ as follows. First draw an index j from {1, . . . ,S} with probability P(j = s) = p(s),
1 ≤ s ≤ S. Next, conditionally on the outcome being j = s, draw an index l ∈ {0, 1} with
probability P(l = 1) = λ. Then conditionally on the outcome being l = 1, set X̄s,1 = Y1,s1 .

Next, draw another index j from {1, . . . ,S} with probability P(j = s′) = p(s′). If s′ 6= s,
then conditionally on outcome being s′, repeat the same step as before, that is, conditionally
on the outcome being j = s′, draw an index l ∈ {0, 1} with probability P(l = 1) = λ.
Then conditionally on the outcome being l = 1, set X̄s′,1 = Y1,s′1 . However, if s′ = s, then
conditionally on this outcome, draw an index i ∈ {0, 1} with probability P(i = 1) = λ. If i = 0,
then X̄s,2 = Y0,s1 ; otherwise, set X̄s,2 = Y1,s2 .

We iterate the previous steps to “couple” our original data—draw another index j from
{1, . . . ,S} with probability P(j = s

′′) = p(s′′). If s′′ 6= s and s
′′ 6= s′, then conditionally on

outcome being s′′ , repeat the same step as before, that is, conditionally on the outcome being
j = s

′′ , draw an index l ∈ {0, 1} with probability P(l = 1) = λ. Then conditionally on the
outcome being l = 1, set X̄s′′ ,1 = Y1,s′′1

. However, if either s′′ = s or s′′ = s′, then conditionally
on this outcome, draw an index k ∈ {0, 1} with probability P(k = 1) = λ. If k = 0 and s′′ = s,
then either X̄s,3 = Y0,s2 if i = 0 in the previous step, or X̄s,3 = Y0,s3 if i = 1 in the previous
step. Analogously, if k = 0 and s

′′ = s′, then X̄s′,2 = Y0,s′1 if l = 0, or X̄s′,2 = Y1,s′2 if l = 1 in
the previous step.

Keep repeating this process, noting that there will probably be a point in which you exhaust
all the m(s) observations governed by the distribution of Y1|S = s for some s ∈ {1, . . . ,S}. If
this happens and another index s is drawn, then conditionally on s, if l = 1 is drawn again,
then just sample a new observation from the distribution of Y1|S = s, and analogously if you
have exhausted all the n(s) from the distribution of Y0|S = s.

Continue this way so that as many as possible of the original Xs observations are used in
the construction of X̄s for all s ∈ S. However, it is possible that for some s, we have used the
observations from Xs to fill all the N(s) observations in X̄s and another index s is drawn. If
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this happens, then conditionally on s, draw another index l ∈ {0, 1}, with P(l = 1) = λ. If
l = 1, then sample a new observation X̄s,N(s)+1 from the distribution of Y1|S = s, otherwise
sample X̄s,N(s)+1 from the distribution of Y0|S = s. Continue this way so that as many as
possible of the original X̃ observations are used in the construction of X̄ =

(
X̄1, . . . , X̄S

)
.

We can reorder the observations in X̄ by a permutation π0 so that for each s, Xs,i and
X̄s,π0(i) agree for all i except for some hopefully small (random) number Cs. To see how this
reordering works, we proceed sequentially, i.e., by stratum. Recall that for the first stratum,
X1 has the observations in order, that is, the first m(1) observations arose from the distribution
of Y1|S = 1, the next n(1) observations from the distribution of Y0|S = 1, and so on and so
forth. Thus, to couple X̄1 with X1, put all observations in X̄1 that came from the distribution
of Y1|S = 1 in the first m(1) positions. If the number of observations from the distribution
of Y1|S = 1 is greater than or equal to m(1) (recall that this is a possibility), then X̄1,π(i) for
i = 1, . . . ,m(1) are filled according to the observations in X̄1 which came from the distribution
of Y1|S = 1, and if the number is greater, put them aside for now. On the other hand, if the
number of observations in X̄1 which came from the distribution of Y1|S = 1 is less than m(1),
fill up as many of X̄1 from the distribution of Y1|S = 1 as possible, and leave the rest of the
blank spots for now.

Next, move onto the observations in X̄1 that came from the distribution of Y0|S = 1 and
repeat the above procedure for m(1) + 1,m(1) + 2, . . . ,m(1) + n(s) spots in order to complete
the observations in X̄1,π(i); simply fill up the empty spots with the remaining observations which
were put aside (at this point the order does not matter, but chronological order is an option).

Repeat this reordering steps for each subsequent stratum. In the end, this permutation
of the observations in X̄ corresponds to a permutation π0 and satisfies, for each 1 ≤ s ≤ S,
Xs,i = X̄s,π0(i) for indexes i, except for Cs of them. The number of observations C = ∑

s∈S Cs
where X̃ and X̄π0 =

(
X̄1,π0 , . . . , X̄S,π0

)
differ is random. We can apply the same reasoning as

in the proof of Chung and Romano (2013, (5.8)) and write for each s

Cs = max{m(s)− m̃(s), 0}+ max{n(s)− ñ(s), 0} ,

where m̃(s) denotes the number of observations in X̄ which are generated from Y1|S = s,
and similarly, ñ(s) denotes the total number of observations in X̄ which are generated from
Y0|S = s. Indeed, (m̃(1), ñ(1), . . . , m̃(S), ñ(S)) follows the multinomial distribution based
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on N trials and success probabilities (λ p(1), (1− λ)p(1), . . . , λ p(S), (1− λ)p(S)). For fixed
1 ≤ s ≤ S

m̃(s)−m(s) = {m̃(s)−Nλp(s)} − {m(s)−N(s)λ} − {λN(s)−Nλp(s)}

= {m̃(s)−Nλp(s)} − DN(s)− λ {N(s)−N p(s)} (D.1)

ñ(s)− n(s) = {ñ(s)−N(1− λ) p(s)}+DN(s)− (1− λ) {N(s)−N p(s)} , (D.2)

where N(s) = m(s) + n(s) = ∑
1≤i≤N 1{Si=s}. The usual central limit theorem implies

m̃(s)−Nλp(s) = Op
(
N1/2

)
ñ(s)−N(1− λ) p(s) = Op

(
N1/2

)
N(s)−N p(s) = Op

(
N1/2

)
.

Assumption A.2 ii) implies DN(s) = Op
(
N1/2

)
. Then, we conclude that C = Op

(
N1/2

)
, and

C/N P→ 0. Moreover, by arguing as in the proof of Chung and Romano (2013, (5.8)), we have
that

E(C) ≤ O
(
N1/2

)
. (D.3)

To see why, plug Eqs. (D.1)–(D.2) into C to obtain

E(C) ≤
∑
s∈S

E
(
|m̃(s)−m(s)|

)
+
∑
s∈S

E
(
|ñ(s)− n(s)|

)

≤
∑
s∈S

{(
E
(
m̃(s)−Nλp(s)

)2)1/2
+
(
E
(
ñ(s)−N(s)(1− λ)

)2
)1/2

+ 2
(
E
(
DN(s)

)2)1/2
+
(
E
(
N(s)−N p(s)

)2)1/2
}

≤
∑
s∈S

{(
Nλp(s)(1− λp(s)

)1/2
+
(
N(1− λ)p(s)(1− p(s)− λp(s)

)1/2

+ 2
(
N p(s)τ(s)

)1/2
+
(
N p(s)(1− p(s)

)1/2
}

= O
(
N1/2

)
,

where 0 ≤ τ(s) ≤ λ(1− λ) for all s.
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