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Abstract

This paper studies a classical problem in statistics: testing goodness of fit in the pres-
ence of a nuisance parameter. The main contribution of this paper is a novel permutation
test for this testing problem that is asymptotically valid under fairly weak assumptions,
while still providing an exact error control in finite samples under more restrictive con-
ditions. In addition, the permutation test presented here is shown to have finite- and
large-sample properties comparable to those existing in the literature.

The main result relies on the martingale transformation of the empirical process in-
troduced by Khmaladze (1981). This procedure clears the empirical process out from the
effect of the nuisance parameter by decomposing it into two parts - a martingale that has
a standard Brownian motion asymptotic behavior, and a second part that vanishes as the
sample size grows large.

A noteworthy application of this testing problem is the one of testing for heterogeneous
treatment effects in a randomized experiment. In this context, the null hypothesis implies
that the distribution of the treatment and control groups are a constant shift apart.
Moreover, the proposed method can be extended to testing the joint null hypothesis that
treatment effects are constant within individual subgroups, while allowing for varying
average treatment effects across subgroups. As a result, this test is able to detect treatment
effect heterogeneity within individual subgroups even if the average treatment effects are
different across subgroups.

To gain further understanding of the test to practical problems, we provide the com-
panion RATest R package (Olivares and Sarmiento (2017)) and apply our test to investigate
the gift exchange hypothesis in the context of two field experiments from Gneezy and List
(2006). Our test rejects the null hypothesis in favor of the heterogeneity in the treatment
effect, where solely looking at the average treatment effect does not provide evidence in
favor of the gift exchange hypothesis.

Keywords: Heterogeneous Treatment Effect, Permutation Test, Empirical Process, Martingale
Transformation, Goodness of Fit.
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1 Introduction
The main goal of this paper is to study the classical goodness-of-fit hypothesis testing problem
with a nuisance parameter. In particular, we propose a permutation test approach to make
inference under minimal assumptions in situations where randomization ideas apply.

The statistical hypothesis problem we examine has the following structure. Consider two
real-valued random variables Y and X with probability distributions F0 and F1, respectively.
We want to test whether these random variables differ in location:

H0 : F1(t+ δ) = F0(t) ∀ t, for some δ .

based on two independent samples from F0 and F1. In other words, the CDFs are a constant
shift apart. A common example of this situation is when the researcher is interested in testing
the hypothesis of constant treatment effect in a randomized trial, where the aforementioned
hypothesis essentially states that the treatment induces a shift in the potential outcomes.

Permutation tests are known to have attractive properties under the randomization hy-
pothesis (Lehmann and Romano (2005)). As long as the permuted sample has the same joint
distribution as the original sample under the null, permutation tests control Type 1 error in
finite samples: the rejection probability under the null is exactly the nominal level α. Moreover,
they are nonparametric in the sense that they can be applied without any parametric assump-
tions about the underlying distribution that generates the data. Also, the general construction
of a permutation test does not depend on the specific form of the test statistic, though some
test statistics will be more suitable and will have better power performance for a specific null
hypothesis. Finally, Hoeffding (1952) showed that for many interesting problems, permuta-
tion tests are asymptotically as powerful as standard optimal procedures. These features make
them desirable for experimental studies, where the treatment is randomly assigned to units in
potentially complex designs.

These standard results only apply to scenarios in which the shift δ is known nonetheless.
When the constant shift is unknown and thus needs to be estimated, it becomes a nuisance
parameter. The presence of a nuisance parameter under the null renders a major drawback:
naively plugging an estimate into the test statistic makes the test statistic non-pivotal, and
the permutation test based on the plug-in test statistic may fail to control the Type 1 error
even asymptotically. In other words, the asymptotic distribution will depend on the unknown
underlying distributions, offsetting its practicality in empirical research.

To overcome this so-called Durbin problem (Durbin (1973)), this paper proposes a novel
permutation test based on the martingale transformation of the empirical process introduced by
Khmaladze (1981) in the two-sample case. This procedure clears the empirical process out from
the nuisance parameters by decomposing it into two parts - a martingale that has a limiting
standard Brownian motion behavior, and a second part that vanishes as the sample size grows
large. This strategy leaves us with an asymptotically distribution-free Kolmogorov-Smirnov
type test. Therefore, the permutation distribution based on the transformed test statistic
inherits a pivotal limiting law, which restores asymptotic validity of the permutation test for
the null hypothesis of interest.

Application: Testing for Heterogeneous Treatment Effect. A key example of
a hypothesis testing problem with this structure is the constant treatment effect hypothesis. Let
Y ∼ F0 and X ∼ F1 be two real-valued random variables representing the potential outcomes
from a randomized trial following Rubin (1974). In other words, we can think of Y and X
as the outcomes for control and treatment groups, respectively. The goal of this paper is to
revisit this testing problem when δ is unknown, and thus needs to be estimated, showing that
our approach renders an asymptotically valid procedure.

2



Detecting treatment effect heterogeneity among individuals plays a key role in any successful
evaluation of a social program using randomized experiments. For example, a student may
benefit or suffer greatly from a policy intervention while another student may experience little
to no effect. Understanding heterogeneity in treatment effects might help researchers or policy
makers design or extend social programs better since the full treatment effect can be investigated
in a thorough and comprehensive way. In order to detect whether there is heterogeneity in the
treatment effect, many applied researchers compare the average treatment effects conditional
on covariates, which has led to the development of nonparametric tests for the null hypothesis
that the average treatment effects, conditional on covariates, are zero (or identical) across
all subgroups (e.g., Hardle and Marron (1990), Neumeyer et al. (2003), Crump et al. (2008),
Imai et al. (2013)). Notwithstanding these approaches will detect some forms of treatment
effect variation, their scope is limited in the sense that they only look at one aspect of the
distribution, namely the mean. Only accounting for constant average treatment effects across
subgroups while ignoring within-group heterogeneity can be misleading and fails to account
for treatment effect heterogeneity. A notable example about the limitations of this method to
investigate treatment effect heterogeneity solely based on averages can be found in Bitler et al.
(2017).

To accommodate this practice our method can be extended to testing the joint null hypoth-
esis that treatment effects are constant within individual subgroups, while allowing for varying
average treatment effects across subgroups. Our test will be able to detect treatment effect het-
erogeneity within individual subgroups even if the average treatment effects are different across
subgroups. Furthermore, we provide the companion RATest R package, available on CRAN, to
simplify and encourage the application of our test in empirical research.

Numerical evidence suggests that the performance of the new test when testing for hetero-
geneous treatment effects is comparable to that of Koenker and Xiao (2002), Chernozhukov
and Fernández-Val (2005), Linton et al. (2005), and Ding et al. (2015), outperforming them in
scenarios where others fail, such as unbalanced control/treatment sample sizes, or when sample
size is small. In all these cases, however, there are substantial differences between their meth-
ods and the one presented in this paper. Koenker and Xiao (2002), Linton et al. (2005) and
Chernozhukov and Fernández-Val (2005) exploit the relationship between CDFs and quantiles,
and their testing approach is based on Kolmogorov-Smirnov or Cramér-von Mises test statis-
tics which are defined on the empirical quantile regression process. Furthermore, Linton et al.
(2005) and Chernozhukov and Fernández-Val (2005) propose resampling methods to overcome
the effects of the estimated nuisance parameter in the limiting distribution, while Koenker and
Xiao (2002), on the other hand, use the Khmaladze decomposition of the empirical quantile
regression process to restore the asymptotically distribution free nature of the test. Despite the
fact that we use a Khmaladze transformation of the empirical process and our test statistic is
based on this transformation, this modified process is simply the input for the construction of
an asymptotically valid permutation test.

Another technique to treatment effect heterogeneity that relies on the comparison of CDFs
is the one in Goldman and Kaplan (2018) .It is worth mentioning that even though Goldman
and Kaplan (2018) are testing for equality at each point in the distribution, they cast this
question as a multiple hypothesis testing of a continuum of CDFs hypothesis, which is rather
different from (3).

Perhaps the most related paper to ours is Ding et al. (2015), who use a Fisher randomization
test based on the comparisons of CDFs using a Kolmogorov-Smirnov statistic. But, there
is one key distinction that fundamentally differentiates both methods. Our test relies on a
martingale decomposition of the empirical process that renders an asymptotically pivotal test.
Ding et al. (2015), on the other hand, yield valid inference by constructing a confidence interval
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for the constant shift, pointwise repeating the test procedure over that interval, and taking the
maximum p-value. As a result, their method does not rely on asymptotic methods though it
is more conservative than our approach, as we will show in the Monte Carlo exercise.

The remainder of this paper is organized as follows. Section 2 formally states the problem,
the Kolmogorov-Smirnov type test statistic and the permutation test based on it, with emphasis
on the application to testing for treatment effect heterogeneity. We first consider the case when
the shift is known for the sake of exposition and to fix notation and key ideas. Then, we relax
the assumption about knowing δ and develop the so-called Durbin problem with unknown δ,
highlighting the main drawbacks of a naive approach which ignores the estimated nuisance
parameter. Section 3 contains the main theoretical results, and takes up some technical and
computational aspects of the Khmaladze transformation. A short discussion on testing the
null hypothesis of constant treatment effects within subgroups while allowing the treatment
effects to vary across subgroups can be found in Section 4. Section 5 presents the Monte
Carlo designs and compares our proposed test to the existing approaches of Koenker and Xiao
(2002), Chernozhukov and Fernández-Val (2005), Linton et al. (2005), and Ding et al. (2015).
Section 6 contains the empirical application, and conclusions are left in Section 7. Auxiliary
results appear in Appendix A. Some additional results regarding the asymptotic behavior of
permutation distributions can be found in Appendix B. The proof of the main result is in
Appendix C.

2 Testing Goodness of Fit

2.1 Set Up
Throughout this paper, we contemplate the following setting. Consider two real-valued random
variables Y ∼ F0 and X ∼ F1. We want to test whether Y and X are a constant shift apart:

H0 : F1(t+ δ) = F0(t) ∀ t, for some δ (1)

based on two independent samples Y1, . . . , Yn and X1, . . . , Xm from F0 and F1, respectively. We
ultimately want to consider the case where δ is not specified, but first let us consider the case
when the constant shift is known to ease the exposition.

running example: One way to clarify ideas and to gain further intuition about our test-
ing procedure is to relate it to our empirical application. Consider the simplest model for a
randomized experiment with subject i’s (continuous) response Yi to a binary treatment Di.
Assume we have a sample of size N and we randomly assign treatment to m < N of them,
while the remaining n = N −m subjects are not exposed to such treatment. We will denote
the m individuals in the first group as treatment group while the second group of size n will be
the control group.

For every subject i, there are two mutually exclusive potential outcomes - either subject
gets treated or not. If subject i were to receive the treatment (Di = 1), the potential outcome
that could be observed is denoted by Yi(1). Similarly, the potential outcome Yi(0) is defined
if the subject i were not to be exposed to the treatment. Given Di, one of them is observed
and the other is the counterfactual outcome we would have observed under the other treatment
level (1-Di). To put it in a more compact way, we say individual i’s observed outcome, Yi is:

Yi = Yi(0) + (Yi(1)− Yi(0))Di .

The treatment effect is defined by the difference between potential outcomes, i.e. individual i’s
treatment effect is δi = Yi(1) − Yi(0), for all i = 1, . . . , N . The treatment effect is constant if
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δi = δ for all i, otherwise we say the treatment effect is heterogeneous in the sense that it varies
across subjects. As a result, the hypothesis of constant effect is

H0 : Yi(1)− Yi(0) = δ ∀ i for some δ (2)

This hypothesis, however, is not directly testable because we happen to observe at most one
potential outcome for each unit. A different but testable hypothesis is available if we consider
the marginal distributions of the observed outcomes for each group. Therefore, the testable
hypothesis becomes.

H0 : F1(y + δ) = F0(y) ∀ y, for some δ (3)

based on two independent samples from F0 and F1. In what follows, we will adopt the potential
outcomes notation.

We now discuss two assumptions:

A. 1. Let n → ∞, m → ∞, with N = n + m, pm = m/N , and pm → p ∈ (0, 1) with
pm − p = O(N−1/2).

A. 2. The CDFs F1 and F0 are absolutely continuous, with densities, f1 and f0 respectively.
Furthermore, F0 and F1 as well as their densities are continuously differentiable w.r.t δ.

Assumption A.1 is standard for the asymptotic results. However, its relevance will become
more palpable when we investigate the asymptotic behavior of the permutation distribution
because, as we will show, it behaves like the unconditional distribution of the test statistic
when all N observations are i.i.d. from the mixture distribution pF1 + (1− p)F0. Assumption
A.2, on the other hand, will be key to establishing the properties of the permutation test when
when δ is unknown, which is our case of interest. In particular, we will require this smoothness
condition to expand the empirical process around the nuisance parameter δ. More details in
Section 2.4 and Appendix B, C.

2.2 Test Statistic
A natural candidate for a test statistic for the hypothesis (3) is to compare empirical CDFs

F̂1(y + δ) = m−1
m∑
i=1

1{Yi(1)≤y+δ}, F̂0(y) = n−1
n∑
j=1

1{Yi(0)≤y}

for some δ based on two independent samples from F0 and F1, that we collect in Z:

Z = (Y1(1), . . . , Y1(m), Y1(0), . . . , Yn(0))

This gives rise to the classical Kolmogorov-Smirnov goodness of fit test statistic:

Km,n,δ(Z) = sup
y
|Vm,n(y, δ)| (4)

where

Vm,n(y, δ) =
√
mn

N

(
F̂1(y + δ)− F̂0(y)

)
(5)

is the two-sample classical empirical process. A well-known result in the theory of stochastic
processes states that the distribution of Km,n,δ under H0 is the same for all continuous F0 and
F1. Let cn,α be the 1 − α quantile of the distribution of Km,n,δ under any continuous F0 and
F1. Then the Kolmogorov-Smirnov test rejects the null (3) for large values of Km,n,δ i.e. if
Km,n,δ > cn,α.
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2.3 Permutation Test
Consider data Z taking values in a sample space Z, and let Ω = {(P,Q)} be a family of pairs
of probability distributions. Let Ω̄ = {(P,Q) : P = Q}, and suppose we are testing the null
hypothesis H0 : (P,Q) ∈ Ω0, where Ω0 ∈ Ω̄. Let GN be the set of all permutations π of
{1, . . . , N}. Consider the following assumption:

Randomization Hypothesis: (Lehmann and Romano (2005), p. 633) Under the null hy-
pothesis, the distribution of Z is invariant under transformations in GN ; that is, for every
π ∈ GN , the joint distribution of (Z1, . . . , ZN) is the same as (Zπ(1), . . . , Zπ(N)).

Under this randomization hypothesis, observations can be permuted and the resulting dis-
tribution is the same as that of the original samples. Thus, under the randomization hypothesis
an exact level α test can be constructed by a permutation test as follows. Consider any test
statistic Tm,n. Given the test statistics Tm,n, recompute Tm,n for all permutations π, i.e. calcu-
late Tm,n(zπ(1), . . . , zπ(N)) for all π ∈ GN . Order these values

T (1)
m,n ≤ T (2)

m,n ≤ · · · ≤ T (N !)
m,n

and fix a nominal level α ∈ (0, 1). Define k = N !− bN !αc where bνc is the largest integer less
than or equal to ν. Let M+(z) and M0(z) be the number of values T (j)

m,n,δ(z), j = 1, . . . , N !,
which are greater than T (k)

m,n(z) and equal to T (k)
m,n(z) respectively. Set

a(z) = αN !−M+(z)
M0(z) .

Define the randomization test function φ(z) as

φ(z) =


1 Tm,n(z) > T (k)

m,n(z)
a(z) Tm,n(z) = T (k)

m,n(z)
0 Tm,n(z) < T (k)

m,n(z) .

Then, under any (P,Q) ∈ Ω0, the resulting permutation test is exact level α:

E[φ(Y1(1), . . . , Ym(1), Y1(0), . . . , Yn(0))] = α .

In addition, define the permutation distribution based on the test statistic Tm,n as

R̂T
m,n(t) = 1

N !
∑
π∈GN

I{Tm,n(zπ(1), . . . , zπ(N)) ≤ t} (6)

in other words, the permutation distribution is the empirical distribution of the N ! values
resulting from recomputing the test statistic for all permutations of the sample.

running example — ctd: Under the null hypothesis (3), the CDFs are a constant shift apart
for some δ, so the randomization hypothesis holds. Thus if we recenter the observations coming
from the treatment group by the treatment effect, i.e. Yi(1) − δ, then we could permute the
observations from control and treatment groups and have the same joint distribution. This will
allow us to construct an exact α level test for the null hypothesis (3) based on the Kolmogorov-
Smirnov test statistic (4). The permutation distribution based on (4) is given by

R̂K(δ)
m,n (t) = 1

N !
∑
π∈GN

I{Km,n,δ(zπ(1), . . . , zπ(N)) ≤ t} (7)

Hence, the permutation test rejects the null hypothesis (3) if Km,n,δ(z) is bigger than the 1−α
quantile of the permutation distribution (7).
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2.4 Durbin Problem
The sequences of empirical processes (5), viewed as random functions, converge in distribution1

to a Gaussian process G whose marginal distributions are zero-mean with covariance structure

EG(s)G(t) = F0(s ∧ t)− F0(s)F0(t) (8)

In other words, G is an F0−Brownian Bridge process, and the limiting distribution of (4), which
we will denote J0(·), follows as stated in the following result.

Theorem 1. . Assume Y1(0), . . . , Yn(0) are i.i.d. according to a probability distribution F0,
and independently Y1(1), . . . , Ym(1) are i.i.d. F1. Consider testing the hypothesis (3) for some
known δ known based on the test statistic (4). Under condition A.1, Km,n,δ converges weakly
under the null hypothesis to

J0(y) ≡ sup
y
|G(y)|

where G(·) is a Gaussian process with covariance structure given by (8).

This uniform central limit theorem, originally due to Donsker (1952) based on previous work
by Kolmogorov (1933) and Doob (1949), plays a key role in the theory of stochastic processes
and goodness of fit problems.

Remark 1. Exploiting the fact that the underlying distributions are absolutely continuous, it
can be readily shown that the limiting distribution above is pivotal. The change of variable
y 7→ F−1

0 (t) renders uniform empirical processes,

υm,n(t, δ) =
√
mn

N

(
1
m

m∑
i=1

1{Yi(1)−δ≤F−1
0 (t)} −

1
n

n∑
i=1

1{Yi(0)≤F−1
0 (t)}

)

=
√
mn

N

(
F̂1(F−1

0 (t) + δ)− F̂0(F−1
0 (t))

)
(9)

In other words, the empirical process defined in (5) is equivalent to a process based on N i.i.d.
uniform variables and its limiting distribution is a Brownian Bridge on [0, 1], which we will
denote as B0. �

Remark 2. Theorem 1 and Remark 1 show that a test based on the uniform empirical process
is particularly attractive because it is asymptotically distribution-free i.e. when δ is known,
the limiting distribution of the Kolmogorov-Smirnov test statistic is the same regardless of
the underlying distribution generating the data — the supremum of a standard Brownian
Bridge process. Furthermore, it follows that if the null hypothesis holds, so that F̂0 and F̂1 are
independent empirical distribution functions from the same continuous distribution function,
then the classical KS statistic converges weakly to the same limit distribution as in the one-
sample two-sided case. �

In addition, the following theorem shows that the permutation distribution (7) converges in
probability to the same limit law as the true unconditional limiting distribution J0(·).

Theorem 2. Assume the premises of Theorem 1. Then the permutation distribution (6) based
on Km,n,δ is such that

sup
y
|R̂K(δ)

m,n (y)− J0(y)| P→ 0,

where J0(·) denotes the c.d.f. of sup |G|.
1Proofs and other asymptotic results in Sections 2.4 can be found in Appendix A (Asymptotic Results). We

omitted them here for the sake of exposition.
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So far, we have dealt with the case when δ is known. However, the location shift or treat-
ment effect, is unknown in practice nonetheless. This is our case of interest. As a result, the
hypothesis (3) makes this case a non-parametric hypothesis testing problem with an estimated
nuisance parameter, and then limiting distribution of the test statistic (4) with estimated δ
will depend on the underlying distribution F0, jeopardizing the asymptotically distribution-free
nature of the test, which is known as the Durbin problem (Durbin (1973)).

Following previous discussion, the straight forward approach would be to compare the CDFs
with “plug-in”2 δ:

F̂1(y + δ̂) = m−1
m∑
i=1

1{Yi(1)≤y+δ̂}, F̂0(y) = n−1
n∑
j=1

1{Yi(0)≤y}

We may equivalently consider the shifted Kolmogorov-Smirnov test statistic:

Km,n,δ̂(Z) = sup
y
|Vm,n(y, δ̂)| . (10)

where

Vm,n(y, δ̂) =
√
mn

N

(
F̂1(y + δ̂)− F̂0(y)

)
(11)

is the two-sample empirical process. Similarly, the permutation distribution with estimated δ̂
results from substituting the test statistic in (6) by (10). When δ is unknown, the empirical
process (11) converges weakly to a Gaussian process B instead of G. More formally, let ξ(·) be
a Gaussian process with mean 0 and covariance structure

C(ξ(x), ξ(y)) = σ2
0f0(x)f0(y)

where σ2
0 = σ2(F0), and f0 is the density of F0. Then, B is defined as:

B(·) = G(·) + ξ(·) (12)

with covariance function

C(G(x), ξ(y)) = f0(y)F0(x) (1− F0(x)) {E(Y (0)|Y (0) ≤ x)− E(Y (0)|Y (0) > x)}

As a result, the limiting distribution of (10), denoted by J1(·), will be different from J0(·),
the limiting distribution of the case when δ is known, as formalized in the next theorem.

Theorem 3. Assume Y1(0), . . . , Yn(0) are i.i.d. according to a probability distribution F0, and
independently Y1(1), . . . , Ym(1) are i.i.d. F1. Consider testing the hypothesis (3) for some
unknown δ based on the test statistic (10). Under conditions A.1-A.2, Km,n,δ̂ converges weakly
under the null hypothesis to

J1(y) ≡ sup
y
|B(y)|

where B(·) is given by (12).

In other words, the necessity of estimating δ introduces a drift ξ(·), which prompts the
limiting distribution of (10) to depend on F0 and functionals of it, making the asymptotic null
distribution intractable. The practical consequence of this is to make difficult, if not impossible,
to obtain critical values. Figure 1 exemplifies this discrepancy when F0 is the standard normal
distribution3.

The following theorem shows the limiting behavior of the permutation distribution based
on the shifted K-S statistic given by (10)

2δ̂ = µ(F̂1)− µ(F̂0), where µ(F̂1) and µ(F̂0) are plug-in estimators of µ(F1) and µ(F0) respectively.
3When Y (0) ∼ N (0, 1), then Y (0) conditional on a < Y (0) < b has a truncated standard normal distribution.

8



Figure 1: Realizations of Classical and Shifted Empirical Processes

Sample paths are formed based on 1000 observations. Covariance structures calculated
assuming F0 follows the standard normal distribution.

Theorem 4. Assume the premises of Theorem 3. Then the permutation distribution (6) based
on Km,n,δ̂ is such that

sup
y
|R̂K(δ̂)

m,n (y)− J0(y)| P→ 0,

where J0(·) denotes the c.d.f. of sup |G|.

Under the hypothesis (3), the true unconditional sampling distribution of Km,n,δ̂ is given
by J1(·) in Theorem 3, which does not equal J0(·) in general. Then, the permutation distribu-
tion and the true unconditional sampling distribution behave differently asymptotically in the
presence of nuisance parameters. Hence, the permutation test for the hypothesis (3) fails to
control the size.

Tests that are formulated as a function of (11), like the Kolmogorov-Smirnov or Cramér-
von-Mises type tests, and don’t take into account the dependency on F0 (or functionals of
it) may suffer from this problem and therefore, break their distribution-free character, even
asymptotically. This is also the case for testing procedures defined on the empirical quantile
regression process rather than the empirical process4. In order to circumvent this problem, one
may adopt a resampling strategy to determine the critical values, or to bypass the nuisance
parameter by removing the effect of the drift in large samples. For example, Chernozhukov
and Fernández-Val (2005) and Linton et al. (2005) subsample appropriately recentered empir-
ical quantile regression process to remove the effect of the estimated parameter. Meanwhile,

In our case, its truncated moments

E(Y (0)|Y (0) ≤ s) = − φ(s)
Φ(s) and E(Y (0)|Y (0) > s) = φ(s)

1− Φ(s)

Then, the covariance function

C(G(s), ξ(t)) = φ(t)Φ(s)(1− Φ(s))
[

φ(s)
1− Φ(s) + φ(s)

Φ(s)

]
4These alternative formulations stem from the relationship between CDFs and quantiles. In the simplest

case of no covariates, the quantile process for this problem is δ(τ) such that F−1
1 (τ) = F−1

0 (τ) + δ(τ).
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Koenker and Xiao (2002) opt for a martingale decomposition of the quantile regression process
which yields a martingale with a standard limit distribution.

In order to avoid asymptotics, Ding et al. (2015) sidestep the Durbin problem and restore
valid inference on the basis of randomization alone. This finite sample alternative relies on
constructing a confidence interval for the constant shift, pointwise repeating the test procedure
over that interval, and taking the maximum p-value, yielding a valid yet conservative solution
to the presence of a nuisance parameter.

Numerical evidence suggests that the proposed test is comparable to or outperforms the ex-
isting methods in situations considered in our simulations. Our strategy is similar to Koenker
and Xiao (2002) in the sense that our permutation test will be based on the martingale trans-
formation of the empirical process introduced by Khmaladze (1981), as we explain in the next
section.

3 Permutation Test based on the Martingale
Transformation

We concluded in Section 2.4 that the consequence of the drift term implied that the limiting
behavior of the test statistic based on the empirical process (10) is no longer distribution-free.
Khmaladze (1981) proposed a solution to this problem in the one sample case, which boils
down to a Doob-Meyer decomposition of the uniform empirical process. We’re going to extend
Khmaladze’s result to the two-sample case and work with the two sample uniform empirical
process (5).

More specifically, let the real-valued function g(s) = (s, f0(s))′ on [0, 1] be bounded and
continuous in its arguments, and ġ(s) = (1, ḟ0(s))′, where ġ is the derivative of g. Define C(s) =∫ 1
s ġ(t)ġ(t)′dt, and assume it is invertible for s ∈ [0, 1). Then the Khmaladze transformation of

the parametric empirical process (5) is given by

υ̃m,n(t, δ̂) = υm,n(t, δ̂)−
∫ y

0

[
ġ(s)′C−1(s)

∫ 1

s
ġ(r)dυm,n(r, δ̂)

]
ds . (13)

Khmaladze (1981) showed that (13) converges weakly to a Brownian motion process, effec-
tively nullifying the effect of the estimated nuisance parameter δ̂. To gain further insight in
regards the Khmaladze transformation, define the map φg : D[0, 1]→ D[0, 1] such that

φg(h)(t) =
∫ t

0

[
ġ(s)′C−1(s)

∫ 1

s
ġ(r)dh(r)

]
ds , (14)

Remark 3. φg(h)(·) is the so-called compensator of h (see Parker (2013)). As noted in Bai
(2003), φg is a linear mapping and φg(cg) = cg for a constant or random variable c. This allows
us to write (13) as

υ̃m,n(t, δ̂) = υm,n(t, δ̂)− φg(υm,n(t, δ̂)) = υm,n(t, δ)− φg(υm,n(t, δ)) + oP (1) .

�

In a similar fashion, we will define the Khmaladze-transformed version of the Kolmogorov-
Smirnov test statistics

K̃m,n,δ̂(Z) = sup
t
|υ̃m,n(t, δ̂)| (15)

where υ̃m,n(t, δ̂) is the Khmaladze transformation in (13). The following proposition shows the
Khmaladze transformation removes the effect of δ̂ on the limit process.
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Theorem 5. Assume Y1(0), . . . , Yn(0) are i.i.d. according to a probability distribution F0, and
independently Y1(1), . . . , Ym(1) are i.i.d. F1. Consider testing the hypothesis (3) for some δ
based on the test statistic (15). Under conditions A.1-A.2, the limiting distribution of K̃m,n,δ̂ is

J2(y) ≡ sup
t
|BM(t)|

where BM(·) = B0(·)− φg(B0(·)) is the standard Brownian Motion.

3.1 Khmaladze Transformation as a Continuous-time Detrending
Operation

To gain further insight as to why the transformation works, we follow Bai (2003) and Parker
(2013), and we consider (13) with y taking discrete values, replacing integral with sums. For
instance, suppose 0 = t0 < t1 < · · · < tm < tm+1 = 1 is a partition of the interval [0, 1] and
that y takes on values on t1, t2, ..., tm. Write (13) in differentiation form

dυ̃m,n(t, δ̂) = dυm,n(t, δ̂)− ġ(t)′C−1(t)
∫ 1

t
ġ(r)dυm,n(r, δ̂)dt (16)

let

yi = dυm,n(ti, δ̂)
ġ(ti)′dti = xi

C(ti) =
m+1∑
k=i

xkx
′
k

∫ 1

y
ġ(r)dυm,n(r, δ̂) =

m+1∑
k=i

xkyk

then the right hand side of (16) can be interpreted as the recursive residuals:

yi − x′i

(
m+1∑
k=i

xkx
′
k

)−1 m+1∑
k=i

xkyk = yi − x′iβ̂i (17)

where β̂i is the OLS estimator based on the last m− i + 2 observations. The cumulative sum
(integration from [0, ti)) of above expression gives rise to a Brownian motion process.

3.2 Numerical Computation of the Khmaladze Transformation
Computationally, we will integrate numerically so we typically assume the partition {ti}i is
evenly spaced, with the accuracy of the method depending on the number of points m. Stack
yi and xi in the following manner

Xi =



√
1
m

√
1
m
ḟ0(tm+1)√

1
m

√
1
m
ḟ0(tm)

... ...√
1
m

√
1
m
ḟ0(ti)

 , yi =



√
m
(
υm,n(tm+1, δ̂)− υm,n(tm, δ̂

)
√
m
(
υm,n(tm, δ̂)− υm,n(tm−1, δ̂

)
...√

m
(
υm,n(ti, δ̂)− υm,n(ti−1, δ̂

)


then the OLS estimator based on the last m− i+ 2 observations described on right hand side
of (17) can be written as

β̂i = (X′iXi)−1 X′iyi
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which implies that the Khmaladze transformation of the empirical process in (13) can be
obtained by numerically integrating from [0, ti), i.e.

υm,n(ti, δ̂)−
1
m

i∑
j=1

x′jβ̂j

and therefore the test statistic can be calculated as

max
1≤i≤1

∣∣∣∣∣∣υm,n(ti, δ̂)−
1
m

i∑
j=1

x′jβ̂j

∣∣∣∣∣∣
3.3 Main Result
The following Theorem shows that the permutation distribution (6) based on the test statis-
tic (15) converges in probability to the same limit law as the true unconditional limiting dis-
tribution J2(·).

Theorem 6. Assume Y1(0), . . . , Yn(0) are i.i.d. according to a probability distribution F0, and
independently Y1(1), . . . , Ym(1) are i.i.d. F1. Consider testing the hypothesis (3) for some δ
based on the test statistic (15). Under conditions A.1-A.2, the permutation distribution (6)
based on the Khmaladze transformed statistic K̃m,n,δ̂ is such that

sup
t
|R̂K̃(δ̂)

m,n (t)− J2(t)| P→ 0,

where J2(·) denotes the c.d.f. of sup |BM |, and BM is a Brownian motion on [0, 1].

Thus the permutation distribution is asymptotically the supremum of a standard Brownian
motion process, as is the true unconditional limiting distribution of the test statistic K̃m,n,δ̂.
Under fairly weak assumptions the theorem restores asymptotically valid inference when the
shift or treatment effect δ is estimated.

Remark 4. Suppose P0 satisfies the null hypothesis H0, and consider a sequence of contiguous
alternatives Pn to P0. Assume that under P0, the (1−α) quantile of the permutation distribution
converges to the 1−α quantile of R, where R(·) is the limiting distribution of the test statistic.
Also assume the test statistic converges in law to R′ under Pn. Then, the probabilities that the
test rejects the null under Pn would tend to 1−R′ (R−1(1− α)). In other words, the power of
the permutation test is essentially the same as the “asymptotic” test in large samples, meaning
there is no loss in using a permutation critical value. Nevertheless, the permutation test is more
robust against large nonparametric families of distributions, making this gains notable. �

4 Within-group Treatment Effect Heterogeneity
One conventional approach to investigating the potential heterogeneity in the treatment effect
involves estimating average treatment effects for subgroups defined by observable covariates,
such as demographic or pre-intervention characteristics. The underlying modeling assump-
tion of this approach treats mean impacts constant within subgroups while allowing them to
vary across subgroups5. Then, one may characterize treatment effect heterogeneity by testing
whether the existing differences vary significantly across subgroups.

5Notwithstanding the simplicity of this approach, it has been shown that it fails to describe the heterogeneity
in the treatment effect in some empirical examples, where it performs poorly relatively to other methods such
as quantile treatment effects models. This point is well developed and documented in Bitler et al. (2017), where
they analyze the effects of the Connecticut’s Jobs First welfare reform on earnings.
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The permutation test proposed in the paper can be implemented to test the adequacy of
this traditional approach that assumes a constant-treatment-effects model, i.e. we can test
whether there exists within-group treatment effect heterogeneity. In essence, we propose a
test method for jointly testing the null hypotheses that treatment effects are constant across
mutually exclusive subgroups while the average treatment effects can vary across subgroups.

Remark 5. Our approach to test the usefulness of the constant-effects-model to characterize
heterogeneity is similar to the one developed in Bitler et al. (2017). Their approach starts
by assuming the constant-effects-model is correct and then constructing what they coined as a
simulated-outcomes distribution. Once equipped with this auxiliary distribution, they then test
for equality of distributions between the actual observed outcomes and the simulated outcomes.
Here, we need not to construct such a simulated distribution and we test based on the actual
observed distribution instead. As a result, these two ways to investigate the acceptability of
the constant-effects-model involve quite different theoretical arguments. �

To formalize the ongoing discussion, suppose we split data into G mutually exclusive sub-
groups defined by covariates. The null hypothesis of interest is now

Hg
0 : F g

1 (y + δg) = F g
0 (y) , for all mutually exclusive subgroup g

where F g
0 (y) and F g

1 (y) are the cumulative distribution functions (CDFs) of the control and
treatment group, respectively, for subgroup g = 1, . . . , G. Note that the nuisance parameter δg
for subgroup g can vary across subgroups.

Remark 6. To this end, as will be explained in Algorithm 1, we will be testing as many multiple
hypotheses simultaneously as the number of subgroups G. If one ignores the multiplicity issue
and tests each hypothesis at level α, the probability of one or more false rejections may be much
greater than α. Thus, we carefully conduct our test while controlling the familywise error rate
(FWER) at level α using a Bonferroni method. �

Consider now for each mutually exclusive subgroup g,

Zg = (Y1(1), . . . , Ymg(1), Y1(0), . . . , Yng(0))

for all g = 1, . . . , G such that ∑g ng = n and ∑
gmg = m. Following our results on the

permutation test based on the Khmaladze transformation, an algorithm for testing the null
hypothesis Hg

0 is given by the following.

Algorithm 1 (Testing Treatment Effect Heterogeneity Across Subgroups)

1. For each subgroup Zg, perform the permutation test based on the Khmaladze transformed
K − S statistic at level α/G, where G is the number of subgroups.

2. Reject the null Hg
0 if any one null for a subgroup is rejected. In other words, reject the

joint null hypothesis Hg
0 if the observed test statistic K̃m,n,δ̂ is greater than6 the lower

(1− α/G) quantile of the permutation distribution for any subgroup g = 1, . . . , G.

5 Monte Carlo Simulations

5.1 Implementation
The martingale transformation described in 3 uses the true density and score functions. In
the Monte Carlo experiments of section 5.1.1, both functions were estimated employing the

6To be more precise, one can use randomization explained in the permutation construction described in
Section 2.3.
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univariate adaptive kernel density estimation (e.g. Portnoy and Koenker, 1989; Koenker and
Xiao, 2002), and the estimates were obtained directly from the R package quantreg (Koenker
(2016)). Simulation results using the true density and score functions were similar in magnitude
and therefore not shown in here, though available upon request.

Even though the computation of the permutation distribution (6) would require the cal-
culation of the test statistics for all N ! permutations of {1, . . . , N}, one can approximate this
distribution arbitrarily close by Monte-Carlo approximation — randomly sample permutations
π from GN without replacement and recompute the test statistic for these samples. The law of
large numbers guarantees that the quantiles of this stochastic approximation converges to the
quantiles of (6) (see Problem 15.4 in Lehmann and Romano (2005)).

5.1.1 Validity of Permutation Test

We are interested in comparing the rejection probabilities of α size permutation tests based
on different test statistics: classic Kolmogorov-Smirnov (δ is known), the shifted Kolmogorov-
Smirnov (a naive approach where we calculate the usual KS p-value assuming that the estimated
treatment is in fact the true treatment effect), and the Khmaladze martingale transformation
of the empirical process based on Kolmogorov-Smirnov test. Moreover, we consider three
additional methods against which we compare our approach: the Fisher Randomization Tests
(FRT) in Ding et al. (2015), and the subsampling and bootstrap methods from Chernozhukov
and Fernández-Val (2005).

Table 1 contains the rejection probability results of the Monte Carlo simulations. We
generated samples from three different distributions: standard normal, lognormal, and student’s
t distribution with 5 degrees of freedom. In this experiment sample sizes vary between groups7.
We considered the sequence of total sample size N ∈ {13, 50, 80, 200}, and for each sample size
and distribution, a constant treatment effect δ = 1 was assigned8. We ran these simulations
with 5000 replications across Monte Carlo Experiments.

The permutation test based on the martingale transformation à la Khmaladze is yielding
considerably correct rejection rates in all cases regardless of the skewness of the distribution
or the sample size. It is worth mentioning that our method outperforms all the others (except
when δ is known) in terms of controlling the Type 1 error when sample sizes are small despite
the fact that we estimate the treatment effect δ, and the density and score functions are also
estimated nonparametrically.

Moreover, these experiments confirm the story of the theoretical results in section 2.4: the
permutation test based on the (naive) shifted KS statistic fails to control the type I error,
even in large samples. We argued that the permutation distribution based on the shifted KS
statistic depends on the underlying law that generates the data and therefore, the permutation
distribution is no longer asymptotically distribution free. Although Ding et al. (2015) did not
compute the permutation distribution using this naive KS statistic, the conclusions of their
naive approach are similar to those found in here9. As shown in Table 1, the permutation test
is either too conservative (normal and student’s t) or it fails to control the size (lognormal). In
the case of skewed distributions, the size of the test increases with the sample size.

Both the confidence interval FRT (FRT CI) by Ding et al. (2015) and subsampling by Cher-
nozhukov and Fernández-Val (2005) control the rejection probabilities across different sample

7In the context of test for the ATE, Caughey et al. (2016) pointed out the dominance of the permutation
test compared to the t-test when sample sizes between groups differ mightily (1000 vs 30) and the distributions
are skewed. In this paper we worked with less accentuated differences. Simulations with alternative choices of
samples sizes are also available though not included in this text.

8Similar results were obtained when we allow for different treatment effects.
9Their Monte Carlo experiment for the naive approach does not calculate the p-value that arises from the

permutation distribution, but the p-value from the KS distribution.
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Table 1: Size of α = 0.05 tests H0 : Constant (δ = 1) Treat-
ment Effect Effect.

Distributions
N Method Normal Lognormal t5

Classic KS 0.0494 0.0482 0.0522
N = 13 Naive KS 0.0000 0.0298 0.0002
n = 8 FRTI CI 0.0000 0.0004 0.0000
m = 5 Subsampling 0.0004 0.0050 0.0016

Bootstrap 0.0742 0.0314 0.0658
Khmaladze 0.0000 0.0472 0.0118

Classic KS 0.0528 0.0506 0.0460
N = 50 Naive KS 0.0002 0.3116 0.0014
n = 30 FRTI CI 0.0064 0.0222 0.0062
m = 20 Subsampling 0.0062 0.0108 0.0102

Bootstrap 0.0330 0.0480 0.0360
Khmaladze 0.0266 0.0354 0.0472

Classic KS 0.0452 0.0516 0.0510
N = 80 Naive KS 0.0000 0.3244 0.0016
n = 50 FRTI CI 0.0122 0.0280 0.0148
m = 30 Subsampling 0.0206 0.0062 0.0066

Bootstrap 0.0818 0.0414 0.0894
Khmaladze 0.0236 0.0590 0.0354

Classic KS 0.0472 0.0548 0.0486
N = 200 Naive KS 0.0004 0.3912 0.0032
n = 120 FRTI CI 0.0290 0.0334 0.0250
m = 80 Subsampling 0.0344 0.0062 0.0124

Bootstrap 0.0926 0.0622 0.0864
Khmaladze 0.0236 0.0354 0.0428

For the FRT CI we used 99.99% CIγ for τ̂ . We followed the
suggested subsampling size is b = 20 + n1/4.
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sizes and data generating processes, but in a rather conservative fashion nonetheless. For in-
stance, when the total sample size is either 50 or 13, FRT CI test is hyper-conservative. We
also show a similar conclusion regarding the bootstrap. More specifically, the Bootstrap is not
valid across distributions for N > 50. This is not surprising since the bootstrap does not have
the same generality as, say, subsampling.

5.1.2 Power of the test

To illustrate the power of the test, we adhere to the design shown in Koenker and Xiao
(2002), which serves as the benchmark for the Monte Carlo experiments in Chernozhukov
and Fernández-Val (2005) and Ding et al. (2015):

Yi(0) = εi, δi = δ + σδYi(0)
Yi(1) = δi + Yi(0)

where σδ denotes the different levels of heterogeneity. Effects that vary from person to person
in this manner are broadly discussed in Rosenbaum (2002), although is worth mentioning the
proposed test allows us to work under more general forms of heterogeneity.

We generate data according to this rule and we calculate the empirical rejection probabilities
for 5% level our permutation test for the null hypothesis of constant treatment effect. For the
sake of comparison, Table 2 also includes the performance of the FRT CI and Subsampling.

In this spirit, we consider the same data generating processes (εi follows a lognormal distri-
bution) and several choices of heterogeneity (σδ ∈ {0, 0.2, 0.5}). Since it is part of our interest
to show the performance in small sample as well, we consider N = 50 in addition to the ones
found in the papers mentioned above. These quantities are based on 5000 experiments.

Table 2: Power of α = 0.05 tests for several levels of heterogeneity σδ, and δ = 1

N Results for Khmaladze Results for FRT CI Results for Subsampling
n = m σδ = 0 σδ = 0.2 σδ = 0.5 σδ = 0 σδ = 0.2 σδ = 0.5 σδ = 0 σδ = 0.2 σδ = 0.5
Lognormal Outcomes
50 0.0118 0.0354 0.1084 0.0194 0.0508 0.0218 0.0120 0.0318 0.0108
100 0.0120 0.0900 0.2320 0.0272 0.0550 0.1526 0.0124 0.0178 0.0590
400 0.0511 0.2910 0.8520 0.0438 0.1880 0.6616 0.0060 0.0340 0.3136
800 0.0440 0.6105 0.9901 0.0332 0.3522 0.9382 0.0064 0.0806 0.7172

For the FRT CI we used 99.99% CIγ for τ̂ . We followed the suggested subsampling size is b = 20 + n1/4.

The power performance of our test illustrates that for the lognormal case, both our test and
the FRT CI have greater rejection rates than subsampling, even in large samples. It is worth
mentioning that FRT CI has higher rejection rates than the Khmaladze test presented here in
small samples (N = 50), but this situation is reverse when the sample size increases, a situation
where the asymptotic approximation works better.

6 Empirical Application
We briefly revisit an experiment by Gneezy and List (2006), also considered in Goldman and
Kaplan (2018), on the effects of gift exchange on worker effort, the so-called gift exchange
hypothesis. The underlying idea behind this model is the assumption that there exists a positive
relationship between wages and worker effort levels. To assess this hypothesis, the authors
conducted two field experiments.
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In the first experiment, experimental subjects were required to computerize the holdings of
a library at an hourly wage of $12. Individuals in the treatment group were later informed that
they would be paid $20 instead. In line with the gift exchange model, individuals exhibited
higher effort in the first period (first 90 min), and the effort levels between control and treatment
groups were not statistically significant in subsequent periods. In the second experiment, the
participants were asked to engage in a door-to-door fund-raising drive. In the same spirit as
the first experiment, the displayed hourly wage was $10, but treatment units were informed
that they would get a $20 wage instead. Analogously, their empirical findings show that the
individuals in the treatment group raised significantly more money in the fist period (few hours
before lunch) than solicitors in the control group, but this effect disappeared in the second
period (few hours after lunch).

In order to complement their findings, we test for heterogeneity in the responses in the first
period in both experiments as well as the consecutive time periods, where the zero treatment
effect null hypothesis is not rejected.

Table 3: Testing for Heterogeneity in the Treatment Effect of Gift Exchanges

Library Task Fundraising Task
Time Mean T − C Test Mean T − C Test
Period Difference Statistic p-value Difference Statistic p-value
1 10.96∗∗ 0.73 0.24 13.80∗∗ 0.76 0.88
2 4.38 0.73 0.28 1.17∗ 1.09 0.085
3 0.46 0.66 0.98
4 0.73 0.68 0.92

This table reports treatment effect differences in effort levels as a result of a gift
exchange in the two experiments described in Gneezy and List (2006). The sample
sizes of the library task for control and treatment groups are n = 10 and m = 9,
respectively. Similarly, the samples for fund-raising task consisted of n = 10 indi-
viduals in the control group, and m = 13 in the treatment group. Column 1 shows
the different time periods for both experiments. In the library task, each period cor-
responds to a 90-minute interval, whereas in the fund-raising task periods 1 and 2
reflect before and after lunch. Inference for the mean difference in columns 2 and 5
was carried out using a one-tailed, right handed Wilcoxon (Mann-Whitney) nonpara-
metric test. Columns 3 and 6 report the Khmaladze transformed test statistic (15),
with corresponding p−values in columns 4 and 7. Stochastic approximations for the
computation of p−values were calculated using 999 permutations.
Significance at p < 0.1 and p < 0.05 is denoted with ∗ and ∗∗, respectively.

Table 3 shows the results from our test. For the first period of the library experiment,
we fail to reject the null hypothesis that this nearly 25 percent difference treatment effect of
the gift exchange induces a constant shift between the distributions of control and treatment
groups (p = 0.24). This conclusion is also reached in Goldman and Kaplan (2018), although
their analysis finds almost rejection in upper quantiles10. Furthermore, the same conclusion
holds when we look at the subsequent periods — we do not have enough evidence in favor of
treatment effect heterogeneity (p = 0.28, p = 0.98, and p = 0.92).

In like manner, our Khmaladze transformed permutation test does not reject that effort
CDFs between treatment and control groups are a constant shift apart in the pre-lunch period
of the fund-raising experiment (p = 0.88). However, out test sheds some light in the second
period for we reject the null hypothesis at a 10% level in favor of heterogeneity in the treatment

10It is worth mentioning that even though Goldman and Kaplan (2018) are also testing for equality at each
point in the distribution, they cast this question as a multiple hypothesis testing of a continuum of CDFs
hypothesis.
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effect of the gift exchange. We therefore complement the results in Gneezy and List (2006),
which reported no statistically significant effect after lunch, masking potential heterogeneity
since they are only looking at one aspect of the distribution, namely the mean. Thus, data
suggest that in the second period, the gift exchange has a heterogeneous effect on effort levels,
in spite the average effect did not provide compelling evidence in favor of the gift exchange
hypothesis.

7 Conclusions
This paper studied the classical goodness-of-fit hypothesis testing with a nuisance parameter.
The leading example was testing for heterogeneity in the treatment effect in the context of a
randomized experiment. The main result of this paper showed that an asymptotically valid
permutation test is readily available for this problem. The permutation tests presented here
exploits the martingale transformation of the empirical process to annihilate the effect of the
estimated nuisance parameter and restore the validity of the permutation test. Numerical
evidence suggests that the performance of the new test when testing for heterogeneous treatment
effects is comparable to existing methods in literature, outperforming them in certain scenarios
such as unbalanced control/treatment sample sizes, or when sample size is small.

We have developed the R package RATest, which simplifies the implementation of the test we
propose in this paper for the empirically oriented researchers. We apply our test to investigate
the gift exchange hypothesis in the context of two field experiments from Gneezy and List
(2006). Our test complements their results in two ways. First, it fails to reject the null that the
gift exchange effect induces a constant shift in the productivity distribution of those who were
treated. Second, it rejects the null hypothesis in favor of the heterogeneity in the treatment
effect where solely looking at the average treatment effect does not provide evidence in favor
of the gift exchange hypothesis.
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Appendix

Appendix A: Auxiliary Results

The Coupling Construction
Assume Y1(0), . . . , Yn(0) are i.i.d. according to a probability distribution F0, the control group,
and independently Y1(1), . . . , Ym(1) are i.i.d. F1, treatment group. Let N = n+m and write

Z = (Z1, . . . , ZN) = (Y1(1), . . . , Ym(1), Y1(0), . . . , Yn(0)) (18)

Moreover, suppose limn→∞ n/N = p ∈ (0, 1) in such a way that

p− n

N
= O(N−1/2)

The main idea behind the coupling argument in Chung and Romano (2013) is that the be-
havior of the the permutation distribution based on Z should behave approximately like the
permutation distribution based on a sample of N iid observations Z̄ = (Z̄1, . . . , Z̄N) from the
mixture distribution P̄ = pF1 + (1− p)F0.

We would wish to compare

Z̄ = (Z̄1, · · · , Z̄N) vs Z = (Y1(1), . . . , Ym(1), Y1(0), . . . , Yn(0))

The basic intuition stems from the following. Since the permutation distribution considers
the empirical distribution of a statistic evaluated at all possible permutations of the data, it
clearly does not depend on the ordering of the observations.

Remark 7. The elements of Z̄ can be thought as the outcome of a compound lottery. First,
draw a random index j from {0, 1} with probability P(j = 0) = p. Then, conditionally on the
outcome being j, sample Z̄i from F0 if j = 0, and from F1 otherwise. �

Except for the fact that the ordering in Z is such that the first n observations are com-
ing from F0, and the last m are coming from F1, the original sampling scheme is still only
approximately like that of sampling from P̄ .

Remark 8. Recall the binomial distribution is used to model the number of successes m when
sampling with replacement from a population of size N . Hence, the number of observations Z̄i
out of N which are from population F0 follows the Binomial distribution with parameters N
and p. This number has mean Np ≈ n, whereas the exact number of observations from F0 in
Z is n. �

Let π = (π(1), . . . , π(N)) be a random permutation of {1, . . . , N}. Then, if we consider a
random permutation of Z and Z̄, the number of observations in the first n entries of Z which
were Y (0)s has the hypergeometric distribution, while the number of observations in the first
n entries of Z̄ which were Y (0)s still has the binomial distribution.

The algorithm

First draw an index j from {0, 1} with probability P(j = 0) = p. Then, conditionally on the
outcome being j, set Z̄1 = Y1(j). Next, draw another index i from {0, 1} at random with
probability P(i = 0) = p. If i = j, set Z̄2 = Y2(j), otherwise Z̄2 = Y1(i). Keep repeating this
process, noting that there will probably be a point in which you exhaust all the n observations
from the control group governed by F0. If this happens and another index j = 1 is drawn
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again, then just sample a new observation Yn+1(0) from F0, and analogously if the observations
you’ve exhausted are from population F1. Continue this way so that as many as possible of
the original Zi observations are used in the construction of Z̄. After this, you will end up with
Z and Z̄, with many of their coordinates in common (and this is why this method is called
“coupling,” because we couple Z̄ with Z). The number of observations which differs, say D, is
the (random) number of added observations required to fill up Z̄. You can access this R file to
see how this algorithm works.

Reordering according to π0

Furthermore, we can reorder the observations in Z̄ by a permutation π0 so that Zi and Zπ0(i)
agree for all i except for some hopefully small (random) number D. Recall that Z has the
observations in order, that is, the first n observations arose from F0, while the last m obser-
vations are distributed according to F1. Thus, to couple Z̄ with Z, put all observation in Z̄
that came from F0 in the first up to n. If the number of observations from F0 is greater or
equal to n (recall that this is a possibility), then Z̄π(i) for i = 1, . . . , n are filled according to the
observations in Z̄ which came from F0, and if the number is greater, put them aside for now.
On the other hand, if the number of observations in Z̄ which came from F0 is less than n, fill
up as many of Z̄ from F0 as possible, and leave the rest of the blank spots for now.

Next, move onto the observations in Z̄ that came from F1 and repeat the above procedure
for n + 1, n + 2, . . . , n + m spots in order to complete the observations in Z̄π(i); simply fill up
the empty spots with the remaining observations which were put aside (at this point the order
does not matter, but chronological order is an option). This permutation of the observations in
Z̄ corresponds to a permutation π0 and satisfies Zi = Z̄π0(i) for indices i except for D of them.

Why does coupling work?

The number of observations D where Z and Z̄π0 differs is random and it can be shown that

E(D/N) ≤ N−1/2

Therefore, if the randomization distribution is based on the shifted Kolmogorov-Smirnov statis-
tic in eq (4), Km,n(Z), such that the difference between Km,n(Z)−Km,n(Z̄π0) is small in some
sense whenever Z̄ and Z̄π0 mostly agree, then one should be able to deduce the behavior of
the permutation distribution under samples from F0, F1 from the behavior of the permutation
distribution when all N observations come from the same distribution P̄ .

Suppose π and π′ are independent random permutations, and independent of the Zi and
Z̄i. Suppose we can show that (

Km,n(Z̄π), Km,n(Z̄π′)
) d→ (T, T ′) (19)

where T and T ′ are independent with common cdf R(·). Then by theorem 5.1 in Chung and
Romano (2013), the randomization distribution based on Km,n converges in probability to R(·)
when all observations are iid according to P̄ . But since ππ0 (meaning π composed with π0, so
π0 is applied first) and π′π0 are also independent random permutations. Then it also implies
that (

Km,n(Z̄ππ0), Km,n(Z̄π′π0)
) d→ (T, T ′)

Using the coupling construction, suppose it can be shown that

Km,n(Z̄ππ0)−Km,n(Z̄π) P→ 0 (20)
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then it also follows that
Km,n(Z̄π′π0)−Km,n(Z̄π′) P→ 0

and by Slutsky’s theorem

(Km,n(Zπ), Km,n(Zπ′)) = (Km,n(Zπ), Km,n(Zπ′)) +
(
Km,n(Z̄ππ0), Km,n(Z̄π′π0)

)
−
(
Km,n(Z̄ππ0), Km,n(Z̄π′π0)

)
= −(Km,n(Zπ)−Km,n(Z̄ππ0)︸ ︷︷ ︸

P→ 0

, Km,n(Z̄π′π0)−Km,n(Zπ′)︸ ︷︷ ︸
P→ 0

)

+
(
Km,n(Z̄ππ0), Km,n(Z̄π′π0)

)
︸ ︷︷ ︸

d→(T,T ′)

we can conclude that (Km,n(Zπ), Km,n(Zπ′)) d→ (T, T ′). Another application of Theorem 5.1
allows us to conclude that the randomization distribution also converges in probability to R(·)
under the original model of two samples from possibly different distributions.

Asymptotic Results
Theorems 1, 3, and 5, as well as their proofs are presented in this manuscript for the sake of
completeness. The two-sample Donsker ’s theorem (Theorem 1) is a straightforward extension
of the one-sample case (for the one sample case see Theorem 19.3 in Van der Vaart (2000)
. Theorem 3 is proven in the Appendix of Ding et al. (2015), Theorem 4, with one minor
modification regarding the normalizing constants in the test statistic. For additional insights,
see the discussion and results in examples V.15 and V.23 in Pollard (2012). Finally, Theorem 5
is the two-sample extension of Khmaladze (1981), Theorem 4.3.
Theorem 1. . Assume Y1(0), . . . , Yn(0) are i.i.d. according to a probability distribution F0,
and independently Y1(1), . . . , Ym(1) are i.i.d. F1. Consider testing the hypothesis (3) for some
known δ known based on the test statistic (4). Under condition A.1, Km,n,δ converges weakly
under the null hypothesis to

J0(y) ≡ sup
y
|G(y)|

where G(·) is a Gaussian process with covariance structure given by (8).

Proof. Assume the premises of the proposition, and write F̂1(y + δ) − F̂0(y) as (F̂1(y + δ) −
F1(y + δ))− (F̂0(y)− F0(y)). Then

Vm,n(y, δ) =
√
mn

N

(
F̂1(y + δ)− F̂0(y)

)
=
√

1− pmV1 −
√
pmV0

where V0 =
√
n(F̂0(y) − F0(y)) and V1 =

√
m(F̂1(y + δ) − F1(y + δ)) are two independent

empirical processes. By Donsker’s theorem, both sequences V0 and V1 can be approximated
by two independent F0 and F1 Brownian bridge processes, G0 and G1 respectively. We can
take these Brownian bridges to be independent because the empirical processes are. Therefore,
Vm,n(y, δ) converges weakly to √

1− pG1(y)−√pG0(y)
which is another zero-mean Brownian Bridge with the same covariance structure as G(·).
Therefore, by the usual continuous mapping theorem, the sequences of “classical” KS statistic
Km,n,δ = supy |Vm,n(y, δ)| converge under the null hypothesis to

J0(y) ≡ sup
y
|G(y)|
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The following theorem establishes the asymptotic behavior of the Kolmogorov-Smirnov test
statistic when δ is replaced by δ̂. As a result of estimating the nuisance parameter, an additional
smoothness condition is required as stated in assumption A.2. It is shown that the test statistic
follows an asymptotic law J1(·) which is different from J0(·), the limiting distribution of the
case when δ is known. See also Ding et al. (2015).

Theorem 3. Assume Y1(0), . . . , Yn(0) are i.i.d. according to a probability distribution F0, and
independently Y1(1), . . . , Ym(1) are i.i.d. F1. Consider testing the hypothesis (3) for some
unknown δ based on the test statistic (10). Under conditions A.1-A.2, Km,n,δ̂ converges weakly
under the null hypothesis to

J1(y) ≡ sup
y
|B(y)|

where B(·) is given by (12).

Proof. Under the null hypothesis (3), we know that for some δ, δ = µ(F1) − µ(F0), σ2(F1) =
σ2(F0) = σ2, and f1(y + δ) = f0(y). Then we develop Vm,n(y, δ̂) as√
mn

N

{
F̂1(y + δ̂)− F̂0(y)

}
=
√
mn

N

{
F̂1(y + δ)− F̂0(y)

}
+
√
mn

N

{
F1(y + δ̂)− F1(y + δ)

}
+
√
mn

N

{
F̂1(y + δ̂)− F1(y + δ̂)

}
−
√
mn

N

{
F̂1(y + δ)− F1(y + δ)

}
=
√
mn

N

{
F̂1(y + δ)− F̂0(y)

}
+
√
mn

N

{
F1(y + δ̂)− F1(y + δ)

}
+ op(1)

due to the fact the last two summands√
mn

N

{
(F̂1(y + δ̂)− F1(y + δ̂))− (F̂1(y + δ))− F1(y + δ)

}
= op(1) (21)

by stochastic equicontinuity of the indicator function. Now expand F1(y+ δ̂) around δ to obtain

Vm,n(y, δ̂) =
√
mn

N

{
F̂1(y + δ)− F̂0(y)

}
+
√
mn

N

{(
F1(y + δ) + f1(y + δ)(δ̂ − δ)

)
− F1(y + δ)

}
+ op(1)

=
√
mn

N
(F̂1(y + δ)− F̂0(y)) +

√
mn

N

(
f0(y)(δ̂ − δ)

)
+ op(1)

Observe√
mn

N
(δ̂ − δ) =

√
mn

N

(
(µ(F̂1)− µ(F1))− (µ(F̂0)− µ(F0))

)
=
√
mn

N

 1
m

m∑
i=1

(Yi(1)− µ(F1))− 1
n

N∑
i=m+1

(Yi(0)− µ(F0))


=
√
n

N

(
1√
m

m∑
i=1

(Yi(1)− µ(F1))
)
−
√
m

N

 1√
n

N∑
i=m+1

(Yi(0)− µ(F0))

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therefore

Vm,n(y, δ̂) =
√
mn

N

{
F̂1(y + δ)− F̂0(y)

}
+
√
mn

N

(
f0(y)(δ̂ − δ)

)
+ op(1)

=
√
mn

N

{(
F̂1(y + δ)− F1(y + δ)

)
−
(
F̂0(y)− F0(y)

)}
+
√
mn

N

(
f0(y)(δ̂ − δ)

)
+ op(1)

=
√

1− pn
(

1√
m

m∑
i=1

{
1{Yi(1)≤y+δ} − F1(y + δ) + f0(y) (Yi(1)− µ(F1))

})

−√pn

 1√
n

N∑
i=m+1

{
1{Yi(0)≤y} − F0(y) + f0(y) (Yi(0)− µ(F0))

}+ op(1)

since both terms have the same limit distribution as shifted Brownian Bridges in Theorem 3,
we have

Vm,n(y, δ̂) =
√
mn

N

{
F̂0(y)− F̂1(y + δ̂)

} d→G(y)− ξ(y)

and the final statement follows from the symmetry of the Brownian Bridge with drift, and the
usual Continuous Mapping Theorem applied to it.

The following theorem establishes the asymptotic behavior of the Kolmogorov-Smirnov test
statistic based on the Khmaladze transformation of the empirical process. In particular, it is
shown that the test statistic follows an asymptotic law that is the supremum of the standard
Brownian motion. We considered a uniform empirical process in Remark 1, denoted υm,n(t, δ).
In a similar fashion, υm,n(t, δ̂) will denote the uniform empirical process with estimated δ. See
also Khmaladze (1981).

Theorem 5. Assume Y1(0), . . . , Yn(0) are i.i.d. according to a probability distribution F0, and
independently Y1(1), . . . , Ym(1) are i.i.d. F1. Consider testing the hypothesis (3) for some δ
based on the test statistic (15). Under conditions A.1-A.2, the limiting distribution of K̃m,n,δ̂ is

J2(y) ≡ sup
t
|BM(t)|

where BM(·) = B0(·)− φg(B0(·)) is the standard Brownian Motion.

Proof. The outline of the proof is the following. We work with the uniform empirical process of
Remark 1 with estimated δ, and exploit the differentiability with respect to δ (condition A.1)
to expand around it. We use the properties of the map φg and Khmaladze theorem to prove
weak convergence to the standard Brownian motion.

Consider the asymptotic representation

υm,n(t, δ̂) =
√
mn

N

(
F̂1(F−1

0 (t) + δ)− F̂0(F−1
0 (t))

)
+
√
mn

N

(
f0
(
F−1

0 (t)
)

(δ̂ − δ)
)

+ op(1)

= υm,n(y, δ) +
√
mn

N

(
f0
(
F−1

0 (t)
)

(δ̂ − δ)
)

+ op(1)

Using g(r) = (r, f0)′, the Khmaladze transformation based on υm,n(y, δ̂) is

υ̃m,n(t, δ̂) = υm,n(t, δ̂)−
∫ t

0

[
ġ(s)′C−1(s)

∫ 1

s
ġ(r)dυm,n(r, δ̂)

]
ds

= υm,n(t, δ̂)− φg(υm,n(t, δ̂))
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From the properties of the map φ, we have φg(cg) = cg for a constant or random variable c.
Then, for g(t) = (t, f0(t))′ we have φg(cf0) = cf0. Replace

c =
√
mn

N

(
δ̂ − δ

)
therefore

υm,n(t, δ̂)− φg(υm,n(t, δ̂)) = υm,n(t, δ) + cf0
(
F−1

0 (t)
)
− φg (υm,n(t, δ))− φg(cf0

(
F−1

0 (t)
)
) + op(1)

= υm,n(t, δ)− φg (υm,n(t, δ)) + op(1)

Weak convergence of υm,n(t, δ) to B0 was established in Remark 1. Thus, υ̃m,n(t, δ̂) weakly con-
verges to the Brownian motion B0(t)−φg(B0(t)), by 4.3 of Khmaladze (1981). The convergence
of K̃m,n,δ̂ follows by the usual continuous mapping theorem.

Appendix B: Asymptotic Behavior of the Permutation
Distribution
Notation: In what follows, it should be understood that G refers to a zero-mean Gaussian
process with covariance structure described by (8). In addition, π and π′ will denote two inde-
pendent random permutations of {1, . . . , N}, and π0 will denote the permutation that reorders
observations in Z̄, as described in Appendix A. In order to emphasize the data that are being
used in the computation of the two-sample empirical processes, we will write Vm,n(y, δ̂;Zπ))
or Vm,n(y, δ̂; Z̄π)), meaning that Vm,n(y, δ̂) was calculated using sample (Zπ(1), . . . , Zπ(N)) or
(Z̄π(1), . . . , Z̄π(N)), respectively. Analogously, Vm,n(y, δ̂; Z̄π′)) is defined with π replaced by π′.

Theorem 2: Limiting Behavior of R̂K(δ)
m,n (t, δ)

Description: This theorem establishes the asymptotic behavior of the Permutation Distri-
bution based on the Kolmogorov-Smirnov test statistic when the parameter δ is known. In
particular, it is shown that the permutation distribution behaves asymptotically like the true
unconditional limiting distribution of the classical KS statistic i.e. the supremum of a Gaussian
process given by G. This result follows from the arguments in Romano (1989). We decided to
include a proof in this paper for completeness and because the proof strategy we follow will be
useful for other results.

Preliminaries: Let us recenter the m observations coming from F1 as follows

Ỹi(1) = Yi(1)− δ for all i = 1, . . . ,m

then Ỹi(1) ∼ F̃1. Since this is an affine transformation of the continuously distributed Y (1)
with density function f1, we have that Ỹ (1) has probability density function f̃1 given by f̃1(y) =
f1(y + δ). Write

Z = (Z1, . . . , ZN) = (Ỹ1(1), . . . , Ỹm(1), Y1(0), . . . , Yn(0))

Thus under the null hypothesis Z1, . . . , ZN are iid F0, implying that the mixture distribution
is essentially F0. Independent of the Zs, let (π(1), . . . , π(N)) and (π′(1), . . . , π′(N)) be two
independent random permutations of {1, . . . , N}. We will denote Zπ = (Zπ(1), . . . , Zπ(N)); Zπ′
is defined with π replaced by π′.
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Theorem 2. Assume the premises of Theorem 1. Then the permutation distribution (6) based
on Km,n,δ is such that

sup
y
|R̂K(δ)

m,n (y)− J0(y)| P→ 0,

where J0(·) denotes the c.d.f. of sup |G|.

Proof. The outline of the proof is the following. We show the finite-dimensional distributions of
(Vm,n(y, δ;Zπ)), Vm,n(y, δ;Zπ′))) converge weakly to the marginals (G(y),G′(y)), and that G(y)
and G′(y) are independent. Then we use Theorem 1.5.4 in Wellner and Van der Vaart (2013)
to establish weak convergence. The limiting distribution of (Km,n,δ(Zπ), Km,n,δ(Zπ′)) to (J0, J

′
0)

follows by the regular continuous mapping theorem. Finally, we use Hoeffding’s Condition
(Theorem 5.1 of Chung and Romano (2013)) to conclude that the permutation distribution
converges in probability to the same limit law as the true unconditional limiting distribution.

Weak Convergence. We want to show that the marginals

(Vm,n(t1, δ;Zπ)), . . . , Vm,n(tk, δ;Zπ)), Vm,n(t1, δ;Zπ′)), . . . , Vm,n(tk, δ;Zπ′)))

converge weakly to the marginals

(G(t1), . . . ,G(tk),G′(t1), . . . ,G′(tk)))

for all k ∈ N, and t1, . . . , tk ∈ R. For the sake of exposition, we first restrict our attention to
the scalar y. Under H0, we observe that

(Vm,n(y, δ;Zπ)), Vm,n(y, δ;Zπ′))) = (1− pm)1/2m−1/2
(

N∑
i=1

XiWi,
N∑
i=1

XiW
′
i

)

= K(m)
(

N∑
i=1

XiWi,
N∑
i=1

XiW
′
i

)

where Xi = 1{Zi≤y} − F0(y), and Wi = 1 if π(i) ∈ I1 = {1, . . . ,m}, Wi = −m/n otherwise, for
all i. Analogously, W ′

i is defined with π replaced by π′. It is easy to check E(Wi) = 1P(π(i) ∈
I1) − m/nP(π(i) /∈ I1) = 0, and E((1{Zπ(i)}≤y − F0(y))Wi) = 0 since π is independent of Z.
Same is true for W ′

i .

Notice that under the null,

E (Vm,n(y, δ;Zπ)) = 0

V (Vm,n(y, δ;Zπ)) = mn

N

(
F0(y)(1− F0(y))

m
+ F0(y)(1− F0(y))

n

)
= F0(y)(1− F0(y))

We claim the asymptotic normality of

K(m)
(

N∑
i=1

XiWi,
N∑
i=1

XiW
′
i

)

To do this, we use the Cramér-Wold device (Theorem 11.2.3 of Lehmann and Romano (2005)).
Then, for any any a and b, we must verify the limiting distribution of

K(m)
N∑
i=1

(aXiWi + bXiW
′
i )) =

N∑
i=1

Cm,n,iXi (22)
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where
Cm,n,i = K(m)(aWi + bW ′

i )
Condition on Wi and W ′

i , then (22) is a conditionally independent sum of linear combination
of independent variables:

m∑
i=1

Cm,n,iXi +
N∑

j=m+1
Cm,n,jXj =

m∑
i=1

Cm,n,i
(
1{Ỹi(1)≤y} − F0(y)

)
+

n∑
j=1

Cm,n,m+j
(
1{Yj(0)≤y} − F0(y)

)

By the arguments in Example 15.2.5 of Lehmann and Romano (2005), we conclude that

maxi=1,...,N Cm,n,i∑N
i=1C

2
m,n,j

P→ 0, as m,n→∞

and so
m∑
i=1

Cm,n,i
(
1{Ỹi(1)≤y} − F0(y)

)
+

n∑
j=1

Cm,n,m+j
(
1{Yj(0)≤y} − F0(y)

) d→ aG + bG′

therefore
(Vm,n(y, δ;Zπ)), Vm,n(y, δ;Zπ′))) d→ (G(y),G′(y))

where G(y) and G′(y) follow the same zero-mean Gaussian process with covariance function
F0(y)(1− F0). Finally, conditionally on W s, we have

C (Vm,n(y, δ;Zπ)), Vm,n(y, δ;Zπ′))) = K2(m)
N∑
i=1

N∑
j=1

C
(
XiWi, XjW

′
j

)

= K2(m)
N∑
i=1

N∑
j=1

E
(
XiWiXjW

′
j

)
= 0

because π, π′ are independent of Z, and mutually independent from each other. It follows that
G(y) and G′(y) are independent, as desired. The same reasoning and the multivariate CLT
apply for arbitrary tuples t1, . . . , tk ∈ R.

Limit Law of R̂K(δ)
m,n . From the previous results, it now follows that (Km,n,δ(Zπ), Km,n,δ(Zπ′))

are asymptotically independent. By the regular the continuous mapping theorem,

(Km,n,δ(Zπ), Km,n,δ(Zπ′))

converges in distribution to the (J0, J
′
0) process with independent, identically distributed marginals

as described in Theorem 1. Therefore, by Hoeffding’s Condition (Theorem 5.1 of Chung and
Romano (2013)),

sup
y
|R̂K(δ)

m,n (y)− J0(y)| P→ 0

Theorem 4: Limiting Behavior of R̂K(δ̂)
m,n (t, δ)

Description: This Proposition establishes the asymptotic behavior of the Permutation Dis-
tribution based on the Kolmogorov-Smirnov test statistic when the parameter δ is unknown. In
particular, it is shown that the permutation distribution behaves asymptotically like the true
unconditional limiting distribution of the classical KS statistic i.e. the supremum of a Gaussian
process given by G, which is in general different than B.
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Preliminaries I: Since we don’t know δ, we cannot shift the observations as we did in
the case of δ known. Instead, we will recenter the m observations coming from F1 using
δ̂ = µ(F̂1)− µ(F̂0). More specifically, Ỹi(1) = Yi(1)− δ̂ for all i = 1, . . . ,m where Ỹi(1) ∼ F̃1.

Preliminaries II: The general proof strategy will be based on the contiguity and coupling
construction results in section 5 of Chung and Romano (2013) and Appendix A in this paper.
The key idea is that the permutation distribution based on Z should behave approximately
like the behavior of the permutation distribution based on a sample of N i.i.d. observations
Z̄ = (Z̄1, . . . , Z̄N) from the mixture distribution P̄ . In order to establish this result, we will
need the following two lemmas.

Lemma 1. Under conditions A.1 and A.2, let Z̄1, Z̄2 . . . , be i.i.d. from the mixture distribution
P̄ = pF̃1 + (1− p)F0, and denote Z̄ = (Z̄1, . . . , Z̄N). Let π and π′ be independent of Z̄. Then(

Vm,n(y, δ̂; Z̄π)), Vm,n(y, δ̂; Z̄π′))
)

converges weakly to (G,G′) with G and G′ two independent Gaussian processes with common
CDF.

Proof. The outline of the proof is similar to the proof of Theorem (2), i.e. we want to show that
the finite-dimensional distributions of

(
Vm,n(y, δ; Z̄π)), Vm,n(y, δ; Z̄π′))

)
converge weakly to the

marginals (G(y),G′(y)), and that G(y) and G′(y) are independent with common CDF. Then
a direct application of Theorem 1.5.4 in Wellner and Van der Vaart (2013) will establish weak
convergence, finishing the proof.

We need to show the marginals(
Vm,n(t1, δ̂; Z̄π)), . . . , Vm,n(tk, δ̂; Z̄π)), Vm,n(t1, δ̂;Zπ′)), . . . , Vm,n(tk, δ̂; Z̄π′))

)
converge weakly to the marginals

(G(t1), . . . ,G(tk),G′(t1), . . . ,G′(tk)))

for all k ∈ N, and t1, . . . , tk ∈ R. We first restrict our attention to the scalar y. Under H0, we
observe that

(
Vm,n(y, δ̂; Z̄π)), Vm,n(y, δ̂; Z̄π′))

)
= (1− pm)1/2m−1/2

(
N∑
i=1

XiWi,
N∑
i=1

XiW
′
i

)

= K(m)
(

N∑
i=1

XiWi,
N∑
i=1

XiW
′
i

)

where Xi = 1{Z̄i≤y} − F0(y), and Wi = 1 if π(i) ∈ I1 = {1, . . . ,m}, Wi = −m/n otherwise, for
all i. Analogously, W ′

i is defined with π replaced by π′. It is easy to check

E(Wi) = 1P(π(i) ∈ I1)−m/nP(π(i) /∈ I1) = 0

and E((1{Z̄π(i)}≤y − F0(y))Wi) = 0 since π is independent of Z̄. Same is true for W ′
i .
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Notice that under the null,

E
(
Vm,n(y, δ̂; Z̄π)

)
= pF̃1(y) + (1− p)F0 − F0

= pf0(y)(δ̂ − δ) + op(1) = R̂m,n

V
(
Vm,n(y, δ̂; Z̄π)

)
= mn

N

(
P̄ (y)(1− P̄ (y))

m
+ P̄ (1− P̄ (y))

n

)
= P̄ (y)(1− P̄ (y))

= F0(y)(1− F0(y)) + R̂m,n(1− R̂m,n − 2F0(y))
= F0(y)(1− F0(y)) + op(1)

since R̂m,n = op(1). We claim the asymptotic normality of

K(m)
(

N∑
i=1

XiWi,
N∑
i=1

XiW
′
i

)

To do this, we use the Cramér-Wold device (Theorem 11.2.3 of Lehmann and Romano (2005)).
Then, for any any a and b, we must verify the limiting distribution of

K(m)
N∑
i=1

(aXiWi + bXiW
′
i )) =

N∑
i=1

Cm,n,iXi (23)

where
Cm,n,i = K(m)(aWi + bW ′

i )
Condition on Wi and W ′

i , then (23) is a conditionally independent sum of linear combination
of independent variables:
m∑
i=1

Cm,n,iXi +
N∑

j=m+1
Cm,n,jXj =

m∑
i=1

Cm,n,i
(
1{Z̄i≤y} − F0(y)

)
+

n∑
j=1

Cm,n,m+j
(
1{Z̄j≤y} − F0(y)

)
By the arguments in Example 15.2.5 of Lehmann and Romano (2005), we conclude that

maxi=1,...,N Cm,n,i∑N
i=1C

2
m,n,j

P→ 0, as m,n→∞

and so
m∑
i=1

Cm,n,i
(
1{Z̄i≤y} − F0(y)

)
+

n∑
j=1

Cm,n,m+j
(
1{Z̄j≤y} − F0(y)

) d→ aG + bG′

therefore (
Vm,n(y, δ̂; Z̄π)), Vm,n(y, δ̂; Z̄π′))

) d→ (G(y),G′(y))

where G(y) and G′(y) follow the same zero-mean Gaussian process with covariance function
F0(y)(1− F0). Finally, conditionally on W s, we have

C
(
Vm,n(y, δ̂; Z̄π)), Vm,n(y, δ̂; Z̄π′))

)
= K2(m)

N∑
i=1

N∑
j=1

C
(
XiWi, XjW

′
j

)

= K2(m)
N∑
i=1

N∑
j=1

E
(
XiWiXjW

′
j

)
= 0

because π, π′ are independent of Z̄, and mutually independent from each other. It follows that
G(y) and G′(y) are independent, as desired. The same reasoning and the multivariate CLT
apply for arbitrary tuples t1, . . . , tk ∈ R.
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Lemma 2. Under conditions A.1 and A.2, let Z̄1, Z̄2 . . . , be i.i.d. from the mixture distribution
P̄ = pF̃1 + (1− p)F0, and denote Z̄ = (Z̄1, . . . , Z̄N). Let π and π′ be independent of Z̄. Then

Vm,n(y, δ̂; Z̄π,π0)− Vm,n(y, δ̂;Zπ) P→ 0

Proof. The proof boils down to showing convergence in probability by proving convergence in
quadratic mean. Everything stated below is implicitly conditioned on π0, but we omit it to
avoid notation clutter.

For a given π,(
mn

N

)−1/2 (
Vm,n(y, δ̂; Z̄ππ0))− Vm,n(y, δ̂;Zπ)

)
= 1
m

m∑
i=1

(I{Z̄ππ0(i) ≤ y} − I{Zπ(i) ≤ y})

− 1
n

N∑
j=m+1

(I{Z̄ππ0(j) ≤ y} − I{Zπ(j) ≤ y})

and observe that the way we constructed Z̄, we have that Zi = Z̄π0(i) for indeces i except for
at most D entries. This is so because Z̄π0 is either of the form

(Zπ0(1), . . . , Zπ0(N)) = (Ỹ1(1), . . . , Ỹ1(m), Y1(0), . . . , Yn−D(0), Ỹm+1(1), . . . , Ỹm+D(1))

or it is of the form

(Zπ0(1), . . . , Zπ0(N)) = (Ỹ1(1), . . . , Ỹm−D(1), Yn+1(0), . . . , Yn+D(0), Y0(1), . . . , Y0(n))

Then all the above sums are zero except for at most D places. For all the indices such that
the differences I{Z̄ππ0(i) ≤ y} − I{Zπ(i) ≤ y} and I{Z̄ππ0(j) ≤ y} − I{Zπ(j) ≤ y} are not zero,
observe that

E
(
I{Z̄ππ0(i) ≤ y} − I{Zπ(i) ≤ y}

)
= −E

(
I{Z̄ππ0(j) ≤ y} − I{Zπ(j) ≤ y}

)
= pF̃1(y) + (1− p)F0(y)− F0(y)
= pF1(y + δ̂) + (1− p)F0(y)− F0(y)

Expand F1(y + δ̂) around δ to obtain

E
(
I{Z̄ππ0(i) ≤ y} − I{Zπ(i) ≤ y}

)
= p

(
F1(y + δ) + f1(y + δ)(δ̂ − δ)

)
+ (1− p)F0(y)− F0(y) + op(1) = op(1)

under the null hypothesis. Hence, conditionally on D and π,

E
(
Vm,n(y, δ̂; Z̄))− Vm,n(y, δ̂;Z)

)
≤
√
mn

N

(
D

min{m,n}

)
E
(
I{Z̄ππ0(i) ≤ y} − I{Zπ(i) ≤ y}

)
≤
√
mn

N

(
O(N1/2)

min{m,n}

)
op(1) = op(1)
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Furthermore, any nonzero term like I{Z̄ππ0(j) ≤ y}− I{Zπ(j) ≤ y} has variance bounded above
by

V
(
I{Z̄ππ0(j) ≤ y} − I{Zπ(j) ≤ y}

)
= V

(
I{Z̄ππ0(j) ≤ y}

)
+ V

(
I{Zπ(j) ≤ y}

)
= E

(
I{Z̄ππ0(j) ≤ y}

) (
1− E

(
I{Z̄ππ0(j) ≤ y}

))
+ E

(
I{Zπ(j) ≤ y}

) (
1− E

(
I{Zπ(j) ≤ y}

))
≤ 1

2

Similarly, V
(
I{Z̄ππ0(i) ≤ y} − I{Zπ(i) ≤ y}

)
≤ 1/2. Conditioning on D and π, the variance is

bounded above in the sense:

V
(
Vm,n(y, δ̂; Z̄))− Vm,n(y, δ̂;Z)

)
≤ mn

N

(
D
( 1
m2 + 1

n2

))
= mn

N

(
n2 +m2

n2m2

)
D

and therefore the unconditional variance is bounded above by

mn

N

(
n2 +m2

n2m2

)
O(N1/2) =

(
n

m
+ m

n

)
O(N−1/2) = O(N−1/2) = o(1)

and therefore convergence is quadratic mean follows.

Theorem 4. Assume the premises of Theorem 3. Then the permutation distribution (6) based
on Km,n,δ̂ is such that

sup
y
|R̂K(δ̂)

m,n (y)− J0(y)| P→ 0,

where J0(·) denotes the c.d.f. of sup |G|.

Proof. Lemma 1 and 2 imply that
(
Km,n,δ̂(Z̄π), Km,n,δ̂(Z̄π′)

)
are asymptotically independent.

By the regular the continuous mapping theorem,(
Km,n,δ̂(Z̄π), Km,n,δ̂(Z̄π′)

)
converges in distribution to the (J0, J

′
0) process with independent, identically distributed marginals

as described in Theorem 1. Then by Hoeffding’s Condition (Theorem 5.1 of Chung and Romano
(2013)),

sup
y
|R̂K(δ̂)

m,n (y)− J0(y)| P→ 0

where R̂K(δ̂)
m,n is the permutation distribution (7) based on Km,n,δ̂ as desired.

Appendix C: Proof of the Main Result
Description: process. In particular, it is shown that the test statistic follows an asymptotic
law that is the supremum of the standard Brownian motion.

Notation: In what follows, it should be understood that BM refers to a standard Brownian
motion process. In addition, π and π′ will denote two independent random permutations of
{1, . . . , N}, and π0 will denote the permutation that reorders observations in Z̄, as described
in Appendix A. In order to emphasize the data that are being used in the computation of the
two-sample uniform empirical processes, we will write υm,n(t, δ̂;Zπ)) or υm,n(t, δ̂; Z̄π)), meaning
that υm,n(t, δ̂) was calculated using sample (Zπ(1), . . . , Zπ(N)) or (Z̄π(1), . . . , Z̄π(N)), respectively.
Analogously, υm,n(t, δ̂; Z̄π′)) is defined with π replaced by π′.
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Preliminaries: The general proof strategy will be based on the contiguity and coupling
construction results in section 5 of Chung and Romano (2013) and Appendix A in this paper.
The key idea is that the permutation distribution based on Z should behave approximately
like the behavior of the permutation distribution based on a sample of N i.i.d. observations
Z̄ = (Z̄1, . . . , Z̄N) from the mixture distribution P̄ . In order to establish this result, we will
need the following two lemmas.
Lemma 3. Under conditions A.1 and A.2, let Z̄1, Z̄2 . . . , be i.i.d. from the mixture distribution
P̄ = pF̃1 + (1− p)F0, and denote Z̄ = (Z̄1, . . . , Z̄N). Let π and π′ be independent of Z̄. Then(

υm,n(t, δ̂; Z̄π)), υm,n(t, δ̂; Z̄π′))
)

converges weakly to (BM,BM ′) with BM and BM ′ two independent standard Brownian motion
processes with common CDF.

Proof. Joint Gaussianity in follows from the discussion in Condition E of Romano (1989). More
specifically, the differentiability condition needed in order to verify Condition E holds for the
present case, since testing the null hypothesis (3) is essentially a two-sample test of homogeneity
(see example 4 of Romano (1989)). Having shown the limits are Gaussian, zero-covariance
renders independence. Then, it needs to be shown that

C
(
υ̃m,n(t, δ̂;Zπ)), υ̃m,n(t, δ̂;Zπ′))

)
= 0

Notice that
υ̃m,n(t, δ̂;Zπ) = υm,n(t, δ;Zπ)− φg (υm,n(t, δ;Zπ)) + op(1)

by exploiting the linearity of the map φg. Therefore

C
(
υ̃m,n(t, δ̂;Zπ)), υ̃m,n(t, δ̂;Zπ′))

)
= C (υm,n(t, δ;Zπ), υm,n(t, δ;Zπ′))
+ C (φg (υm,n(t, δ;Zπ)) , φg (υm,n(t, δ;Zπ′)))
− C (υm,n(t, δ;Zπ), φg (υm,n(t, δ;Zπ′)))
− C (υm,n(t, δ;Zπ′), φg (υm,n(t, δ;Zπ))) + op(1)

It follows from the arguments in the proof of Theorem 4 that

Vm,n(y, δ;Zπ)) = K(m)
N∑
i=1

XiWi

C (Vm,n(y, δ;Zπ), Vm,n(y, δ;Zπ′)) = 0
Use linearity of the map φg once again,

φg (Vm,n(y, δ;Zπ))) = φg

(
K(m)

N∑
i=1

XiWi

)
= K(m)

N∑
i=1

φg (XiWi)

Therefore, conditionally on W s,

C (φg (Vm,n(y, δ;Zπ)) , φg (Vm,n(y, δ;Zπ′))) = K2(m)C
(

N∑
i=1

φg (XiWi) ,
N∑
i=1

φg (XiW
′
i )
)

= K2(m)
N∑
i=1

N∑
j=1

E
(
φg (XiWi)φg

(
XjW

′
j

))
= 0

C (Vm,n(y, δ;Zπ′), φg (Vm,n(y, δ;Zπ))) = K2(m)C
(

N∑
i=1

φg (XiWi) ,
N∑
i=1

XiW
′
i

)

= K2(m)
N∑
i=1

N∑
j=1

E
(
φg (XiWi)XjW

′
j

)
= 0
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because π, π′ are independent of Z, and mutually independent from each other. Once again,
Slutsky theorem with the change of variable described in Remark 1 implies

C
(
υ̃m,n(t, δ̂;Zπ)), υ̃m,n(t, δ̂;Zπ′))

)
= op(1)

Lemma 4. Under conditions A.1 and A.2, let Z̄1, Z̄2 . . . , be i.i.d. from the mixture distribution
P̄ = pF̃1 + (1− p)F0, and denote Z̄ = (Z̄1, . . . , Z̄N). Let π and π′ be independent of Z̄. Then

υm,n(y, δ̂; Z̄π,π0)− υm,n(y, δ̂;Zπ) P→ 0

Proof. Everything stated below is implicitly conditioned on π0, but we omit it to ease notation.
Fix π and use the asymptotic representation in proof of Theorem 5

υ̃m,n(t, δ̂; Z̄π,π0)− υ̃m,n(t, δ̂;Zπ) = υm,n(t, δ; Z̄π,π0)− υm,n(t, δ; Z̄π)−(
φg
(
υm,n(t, δ; Z̄π,π0)

)
− φg

(
υm,n(t, δ; Z̄π)

))
+ op(1)

We need to guarantee that the remainder, defined in eq (21) in the proof of Theorem 3, is still
op(1) under Zπ. We will use the contiguity result of Chung and Romano (2013); let V1, V2, . . . ,
be iid from the mixture distribution P̄ = pF1 + (1− p)F0, and observe the remainder satisfies

√
mn

N

{
1
m

m∑
i=i

1{Vi≤y+δ̂} − F1(y + δ̂)
}
−
√
mn

N

{
1
m

m∑
i=i

1{Vi≤y+δ} − F1(y + δ)
}

P→ 0

by stochastic equicontinuity of the indicator function. Then, by Lemma 5.3 of Chung and
Romano (2013),

√
mn

N

{
1
m

m∑
i=i

1{Zπ(i)≤y+δ̂} − F1(y + δ̂)
}
−
√
mn

N

{
1
m

m∑
i=i

1{Zπ(i)≤y+δ} − F1(y + δ)
}

P→ 0

as desired. Furthermore, by the arguments of Proposition 2 and Slutsky theorem with the
change of variable described in Remark 1,

υm,n(y, δ; Z̄π,π0)− υm,n(y, δ; Z̄π) = op(1)

The linear operator φg is also a Fredholm operator (Koenker and Xiao (2002)) on a Banch
space, therefore it is a bounded operator. But an operator between normed spaces is bounded
if and only if it is a continuous operator (Abramovich and Aliprantis (2002)). Therefore, by
the Continuous Mapping Theorem,

φg
(
υm,n(t, δ; Z̄π,π0)

)
− φg

(
υm,n(t, δ; Z̄π)

)
= op(1)

then

υ̃m,n(t, δ̂; Z̄π,π0)− υ̃m,n(t, δ̂;Zπ) = op(1)

as desired.
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Theorem 6. Assume Y1(0), . . . , Yn(0) are i.i.d. according to a probability distribution F0, and
independently Y1(1), . . . , Ym(1) are i.i.d. F1. Consider testing the hypothesis (3) for some δ
based on the test statistic (15). Under conditions A.1-A.2, the permutation distribution (6)
based on the Khmaladze transformed statistic K̃m,n,δ̂ is such that

sup
t
|R̂K̃(δ̂)

m,n (t)− J2(t)| P→ 0,

where J2(·) denotes the c.d.f. of sup |BM |, and BM is a Brownian motion on [0, 1].

Proof. Lemma 3 imply that
(
K̃m,n,δ̂(Z̄π), K̃m,n,δ̂(Z̄π′)

)
are asymptotically independent. Regular

continuous mapping theorem implies that(
K̃m,n,δ̂(Z̄π), K̃m,n,δ̂(Z̄π′)

)
converges in distribution to the (J2, J

′
2) process with independent, identically distributed marginals

as described in Theorem 5. By Lemmas 3 and 4 and Hoeffding’s Condition (Theorem 5.1 of
Chung and Romano (2013)), we have

sup
t
|R̂K̃(δ̂)

m,n (t)− J2(t)| P→ 0

where R̂K̃(δ̂)
m,n is the permutation distribution (6) based on K̃m,n,δ̂ as desired.
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