
Permutation Test for Heterogeneous Treatment Effects
with a Nuisance Parameter

EunYi Chung†

Department of Economics
UIUC

eunyi@illinois.edu

Mauricio Olivares
Department of Economics

UIUC
lvrsgnz2@illinois.edu

August 17, 2020

Abstract

This paper proposes an asymptotically valid permutation test for heterogeneous treat-
ment effects in the presence of an estimated nuisance parameter. Not accounting for the
estimation error of the nuisance parameter results in statistics that depend on the par-
ticulars of the data generating process, and the resulting permutation test fails to control
the Type 1 error, even asymptotically.

In this paper we consider a permutation test based on the martingale transformation
of the empirical process to render an asymptotically pivotal statistic, effectively nullifying
the effect associated with the estimation error on the limiting distribution of the statistic.
Under weak conditions, we show that the permutation test based on the martingale-
transformed statistic results in the asymptotic rejection probability of α in general while
retaining the exact control of the test level when testing for the more restrictive sharp
null. We also show how our martingale-based permutation test extends to testing whether
there exists treatment effect heterogeneity within subgroups defined by observable covari-
ates. Our approach comprises testing the joint null hypothesis that treatment effects are
constant within mutually exclusive subgroups while allowing the treatment effects to vary
across subgroups.

Monte Carlo simulations show that the permutation test presented here performs well
in finite samples, and is comparable to those existing in the literature. To gain further un-
derstanding of the test to practical problems, we investigate the gift exchange hypothesis
in the context of two field experiments from Gneezy and List (2006). Lastly, we provide
the companion RATest R package to facilitate and encourage the application of our test
in empirical research.

Keywords: Permutation Test, Heterogeneous Treatment Effect, Empirical Process, Martingale
Transformation, Multiple hypothesis testing, Westfall–Young.
JEL Classification: C12, C14, C46.

†A previous version of this paper was circulated under the title “Non-Parametric Hypothesis Testing with
a Nuisance Parameter: A Permutation Test Approach.” All errors are our own.
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1 Introduction

The main goal of this paper is to test whether the treatment effect is heterogeneous in the
presence of an estimated nuisance parameter. In particular, we propose a permutation test
approach to conduct inference under minimal assumptions in situations where randomization
ideas apply, such as randomized experiments.

The statistical problem we examine has the following structure. Consider two real-valued
random variables Y0 and Y1 representing the control and experimental outcomes from a ran-
domized trial, with distribution functions F0(·) and F1(·), respectively. This paper focuses on
the following type of null hypothesis:

H0 : F1(y + δ) = F0(y) ∀ y, for some δ ,

based on two independent samples from their respective distributions. In other words, we want
to test the null hypothesis of whether the corresponding treatment induces a constant shift in
the potential outcome distribution.

Permutation tests are known to have attractive properties under the randomization hy-
pothesis (Lehmann and Romano, 2005). As long as the permuted sample has the same joint
distribution as the original sample under the null hypothesis, permutation tests control size in
finite samples, i.e. the rejection probability under the null hypothesis is exactly the nominal
level α. Besides, they are nonparametric in the sense that they can be applied without any
parametric assumptions about the underlying distribution that generates the data. Moreover,
the general construction of a permutation test does not depend on the specific form of the test
statistic, though some statistics will be more suitable and will have better power performance
for a specific null hypothesis. Finally, Hoeffding (1952) showed that for many interesting prob-
lems, permutation tests are asymptotically as powerful as standard optimal procedures. These
features make them desirable for analyzing randomized experiments.

However, these classical properties of the permutation tests do not apply to the testing
problem at hand when δ is unknown and thus becomes an unknown nuisance parameter—the
error involved in the estimation of δ renders a statistic whose limiting distribution depends on
the underlying data generating process. Consequently, the resulting permutation test based on
naively plugging in the estimated parameter fails to control Type 1 error even asymptotically
since the statistic is no longer asymptotically pivotal.

We propose a novel asymptotically valid permutation test for testing heterogeneous treat-
ment effect in the presence of an estimated nuisance parameter. Our approach exploits the
martingale transformation of the empirical process introduced by Khmaladze (1981) in the
two-sample case1. The idea behind the Khmaladze transformation is to modify the empirical

1There is a rich literature on using the martingale transformation method to obtain asymptotically
distribution-free tests (see Li (2009) for a thorough review). Notable examples in econometrics include the
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process so that the resulting statistic becomes asymptotically pivotal. More specifically, the
Khmaladze transformation clears the empirical process out from the nuisance parameters by
decomposing it into two parts—a martingale with a standard Brownian motion limiting behav-
ior, and a second part that vanishes in the limit as the sample size increases. This strategy
leaves us with an asymptotically distribution-free empirical process, a property that carries
over the sup-norm functionals of it. We show in this paper that a permutation test based on
this martingale-transformed statistic controls the limiting rejection probability, restoring the
asymptotic validity of the permutation test.2 We extend the proposed method to test whether
there exists treatment effect heterogeneity within subgroups defined by observable covariates.
Our approach boils down to jointly testing the null hypotheses that treatment effects are con-
stant within mutually exclusive subgroups while allowing them to be different across subgroups.
A byproduct of this extension is that we are also able to determine for which groups, if any,
there is a heterogeneous treatment effect. Lastly, we provide the companion RATest R package,
available on CRAN, to simplify and encourage the application of our test in empirical research.

More broadly, the problem of nonstandard distributions for sup-norm tests, or procedures
based on sup-norm functionals like the permutation test presented here, falls into the classical
goodness-of-fit problem with estimated nuisance parameter. The martingale transformation of
Khmaladze (1981, 1993) in this paper is just one way to generate asymptotically distribution-
free tests, but other approaches are available. Durbin (1973, 1975, 1985) and Parker (2013)
methods conduct distributionally dependent inference based on Fourier inversion and boundary-
crossing probabilities, whereas Chernozhukov and Fernández-Val (2005) and Linton et al. (2005)
propose resampling methods to determine critical values.

Detecting treatment effect heterogeneity among individuals plays a key role in the design
and successful evaluation of a social program using randomized experiments3. For example,
an individual may benefit or suffer greatly from a policy intervention while another individual

pioneering works of Bai and Ng (2001) on conditional symmetry in time series, Koenker and Xiao (2002) for
the quantile regression process, and testing parametric conditional distributions by Bai (2003). This martingale
approach has been generalized by Song (2010) to include semiparametric models such as single index restric-
tions, partially parametric regressions, and partially parametric quantile regressions. Other extensions include
nonlinear regression (Stute et al., 1998; Khmaladze and Koul, 2004, 2009), specification tests for autoregressive
processes (Koul and Stute, 1999; Delgado et al., 2005; Delgado and Stute, 2008), or tests for parametric volatility
function of a diffusion model (Chen et al., 2015) are also readily available.

2Restoring asymptotic validity of the permutation test by modifying the statistic that is based upon (so that
it is asymptotically pivotal) can be found in the literature, including the pioneering papers of Neuhaus (1993)
in the context of censoring models, or equality of univariate means and statistical functionals (Janssen, 1997,
1999). More generally, the asymptotic theory in Chung and Romano (2013) allows to handle general univariate
testing problems. See Chung and Romano (2016b) and references therein for more examples of the same idea.

3The 2019 Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel exemplifies the impor-
tance of this claim—in the fight to alleviate poverty, The Royal Swedish Academy of Sciences argues, “questions
are often best answered via carefully designed experiments among the people who are most affected” (Nobel
Media AB, 2019). This careful design of experiments depends to a large extent on our ability to comprehend
the potential heterogeneity in the treatment effect.
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may experience little to no effect. Understanding heterogeneity in treatment effects might help
researchers or policy makers design or extend social programs better since the full treatment
effect can be investigated thoroughly and comprehensively.

In order to detect whether there is heterogeneity in the treatment effect, many applied
researchers compare the average treatment effects conditional on covariates, which has led to
the development of nonparametric tests for the null hypothesis that the average treatment
effects, conditional on covariates, are zero (or identical) across all subgroups (e.g. Härdle and
Marron, 1990; Neumeyer and Dette, 2003; Crump et al., 2008; Imai and Ratkovic, 2013; Wager
and Athey, 2018). Even though these approaches will detect some forms of treatment effect
variation, their scope is limited in the sense that they only look at one aspect of the distribution,
namely the mean4.

We follow a different route, and look at the entire outcome distributions. There is already
a body of research that devotes considerable attention to comparing distributions to overcome
the limitations resulting from solely looking at the average treatment effects. Notable examples
comparing the marginal distribution functions of the potential outcomes include the random-
ization test of Ding et al. (2016), and the multiple-testing approach of Goldman and Kaplan
(2018) to determine where the distributions differ. Quantile-based inference, analogously, inves-
tigates heterogeneity across individuals conditional on the quantile of the outcome distribution
(Lehmann, 1974; Doksum, 1974; Koenker and Xiao, 2002; Chernozhukov and Fernández-Val,
2005) by exploiting the correspondence between quantiles and distribution functions.

Among all the aforementioned papers, our work is most closely related to Ding et al. (2016),
but differs substantially in two important ways when there is an unknown nuisance parame-
ter. First, our test is asymptotic in nature—our permutation test is based on a martingale
transformation of the empirical process to obtain a pivotal statistic. The permutation test pro-
posed by Ding et al. (2016), on the other hand, relies on constructing a confidence interval for
the unknown nuisance parameter, repeating the permutation test pointwise over the interval,
and then taking the maximum p-value. Second, our procedure controls the limiting rejection
probability asymptotically. Meanwhile, though the pointwise procedure of Ding et al. (2016)
yields a valid permutation test, it is conservative because it considers the maximum p-value.
Our Monte Carlo experiments show that our proposed method delivers a better size control,
confirming this observation.

The layout of the article is organized as follows. Section 2 presents an overview of the
statistical problem at hand, highlighting its main theoretical challenges. Section 2.1–2.2 in-
troduce the basic setting for permutation tests for the sharp null, where the permutation test
retains an exact control in finite samples. We show in Section 2.3 that the permutation test
based on the test statistic with estimated nuisance parameter fails to control the rejection
probability even asymptotically. To address this issue, in Section 3 we apply the martingale

4See Bitler et al. (2006, 2017) and Xiao and Xu (2019) for a good exposition about the limitations of mean
impacts and subgroup variation.
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transformation, yielding an empirical process that is asymptotically pivotal. Under weak as-
sumptions that make this transformation possible, we show that the permutation test based on
this martingale-transformed statistic controls the limiting rejection probability. In Section 4 we
extend the proposed method to conduct inference about heterogeneity in the treatment effect
for specific subgroups defined by observable covariates, approaching this testing problem as a
multiple hypothesis testing problem. Numerical results, simulations and computational results
of our paper and competing alternatives can be found in Section 5. Section 6 is dedicated to
the empirical illustration of the proposed method, where we apply our test to investigate the
gift exchange hypothesis in the context of two field experiments from Gneezy and List (2006).
Lastly, conclusions are collected in Section 7. Proofs, auxiliary lemmas and additional material
are contained in Appendices A–D.

2 Statistical Environment

Consider the following randomized experiment model, where Yi denotes the (observed) outcome
of interest for the unit ith, and Di is a binary treatment indicating whether the ith unit is
treated or not. As usual, if the unit is treated, Di = 1 and we will say it belongs to the
treatment group, otherwise Di = 0 and it belongs to the control group. Throughout the paper,
we only consider completely randomized experiments, i.e., covariates are not used to inform
the treatment assignment.5 Let Yi(1) be the potential outcome of the ith unit if treated, and
Yi(0) the potential outcome of the ith unit if not treated. The observed outcome of interest
and the potential outcomes are related to treatment assignment by the relationship

Yi = Yi(0) + (Yi(1)− Yi(0))Di .

Our object of interest is the treatment effect, defined to be the difference between potential
outcomes of the ith unit, δi = Yi(1) − Yi(0). The treatment effect is constant if δi = δ,
otherwise we say the treatment effect is heterogeneous. The constant treatment effect null
hypothesis is then

Hs
0 : Yi(1)− Yi(0) = δ ∀ i for some δ . (1)

If δ were to be known, then (1) becomes a sharp null.6 Hypotheses like (1) are, however,
not directly testable because we happen to observe at most one potential outcome for each
unit (the so-called fundamental problem of causal inference (e.g. Holland, 1986)). A different

5A more detailed review of different randomization schemes can be found in Hu et al. (2014). See also Bugni
et al. (2018); Ma et al. (2019) and the references therein.

6Hypotheses like (1) are sharp because under this hypothesis all potential outcomes are known exactly—it
is specified for all units. Fisher’s original formulation assumes the sharp null of zero effect i.e. δ = 0 for all i.

5



but testable hypothesis is available if we consider the marginal distributions of the observed
outcomes for units that were treated and units who were not.

More formally, Let Y1,1, . . . , Y1,m and Y0,1, . . . , Y0,n be two independent random samples
having distribution functions F1(·) and F0(·), respectively.7 The (testable) constant treatment
effect null hypothesis becomes:

H0 : F1(y + δ) = F0(y) ∀ y, for some δ . (2)

Note that (2) embeds the null hypothesis (1), and therefore a test that rejects H0 implies
rejecting the more restrictive null hypothesis Hs

0 by necessity, but not the other way around.

Remark 1. Under the null hypothesis (2), the distribution functions (CDF) of observations be-
longing to treatment and control groups, F1(·) and F0(·), are a constant shift apart. Therefore,
the means of the outcomes under treatment and control satisfy

∫
ydF1(y) =

∫
ydF0(y)+δ. This

implies that δ is identified and
√
N -consistently estimable as the difference in sample means

from both groups. �

Remark 2. Constant treatment effect null hypotheses may be equivalently formulated in terms
of quantiles, rather than CDFs, by adopting the Doksum–Lehmann quantile treatment model
(Doksum, 1974; Lehmann, 1974). Thus by changing variables so τ = F0(y), we obtain the
quantile treatment effect

δ(τ) = F−1
1 (τ)− F−1

0 (τ) , (3)

where F−1(τ) = inf{y : F (y) ≥ τ}, as usual. As a result, the constant treatment effect null
hypothesis boils down to suppressing the dependency of δ on τ so δ(τ) = δ for all τ ∈ [0, 1].
Examples of this approach are found in Koenker and Xiao (2002) and Chernozhukov and
Fernández-Val (2005). We are not adopting this formulation and hence we are dealing with
CDFs. For more on the quantile treatment effects, see Doksum and Sievers (1976). �

We now discuss two assumptions that are relevant throughout the paper:

A. 1. Let n → ∞, m → ∞, with N = n + m, pm = m/N , and pm → p ∈ (0, 1) with
pm − p = O(N−1/2).

A. 2. F1 and F0 are absolutely continuous, with densities, f1 and f0 respectively. Furthermore,
F0 and F1 as well as their densities are continuously differentiable with respect to δ.

Assumption A.1 is standard for the asymptotic results. However, its relevance will become
more palpable when we investigate the asymptotic behavior of the permutation distribution

7Thus, Y1,i = Yi among the treated, and Y0,i = Yi among the non-treated.
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because, as we will show, it behaves like the unconditional distribution of the test statistic
when all N observations are i.i.d. from the mixture distribution.

Assumption A.2, on the other hand, will be key to establishing the properties of the per-
mutation test as a result of estimating the nuisance parameter δ. In particular, i) it allows us
to expand the empirical process around the nuisance parameter δ, ii) it guarantees that the
mixture distribution is absolutely continuous as well, and iii) it ensures the transformation of
the uniform empirical process into an innovation martingale.

2.1 Test Statistic

One natural candidate for a test statistic for hypothesis (2) is to compare the empirical CDFs
based on two independent random samples. To fix notation, suppose that outcome Y1 is drawn
from a distribution with CDF F1, and similarly, Y0 is drawn from a distribution with CDF F0.

Let Y1,1, . . . , Y1,m and Y0,1, . . . , Y0,n be two independent random samples from F1 and F0.
Collect the observed data in Z = (Z1, . . . , ZN) as follows

Z = (Y1,1, . . . , Y1,m, Y0,1, . . . , Y0,n) .

Consider the empirical CDFs

F̂1(y + δ̂) = 1
m

m∑
i=1

1{Y1,i≤y+δ̂} and F̂0(y) = 1
n

n∑
i=1

1{Y0,i≤y} ,

where δ̂ is given by
δ̂ = 1

m

m∑
i=1

Y1,i −
1
n

n∑
i=1

Y0,i .

This gives rise to the two-sample Kolmogorov–Smirnov statistic:

Km,n,δ̂(Z) = sup
y

∣∣∣Vm,n(y, δ̂;Z)
∣∣∣ , (4)

where

Vm,n(y, δ̂;Z) =
√
mn

N

(
F̂1(y + δ̂)− F̂0(y)

)
(5)

is the two-sample empirical process. We may equivalently consider the following transformation
of the two-sample Kolmogorov–Smirnov statistic via the change of variable y 7→ F−1

0 (t) and
work with

Ku
m,n,δ̂

(Z) = sup
0≤t≤1

∣∣∣υm,n(t, δ̂;Z)
∣∣∣ , (6)
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where

υm,n(t, δ̂;Z) =
√
mn

N

(
1
m

m∑
i=1

1{Y1,i−δ̂≤F−1
0 (t)} −

1
n

n∑
i=1

1{Y0,i≤F−1
0 (t)}

)
(7)

=
√
mn

N

(
F̂1(F−1

0 (t) + δ̂)− F̂0(F−1
0 (t))

)
= Vm,n(F−1

0 (t), δ̂;Z) .

2.2 Permutation Test under the Sharp Null

We begin the study of the properties of the permutation test in the case when δ is known as a
stepping stone to the more challenging case with estimated δ̂. This case corresponds with the
sharp null, and we are going to refer to it as classical.8

In the classical case with δ known, we are able to determine all potential outcomes as well
as the exact null distribution. With this in mind, we calculate the two-sample Kolmogorov–
Smirnov statistic and then permute the data many times, computing the statistic on each
permutation. The empirical distribution of the values of the statistic recalculated over these
permutations of the data serves as a null distribution; this leads to a permutation test that is
exact level α in finite samples.

To see why this construction works, let us introduce further notation. First, note that
if δ were known, we could recenter the observations from the treatment group by δ. More
specifically, let Z∗ = (Z∗1 , . . . , Z∗N) be given by

Z∗ =
(
Y1,1 − δ, . . . , Y1,m − δ, Y0,1, . . . , Y0,n

)
, (8)

and consider the classical two-sample Kolmogorov–Smirnov statistic:

Km,n,δ(Z∗) = sup
y
|Vm,n(y, δ;Z∗)| , (9)

where

Vm,n(y, δ;Z∗) =
√
mn

N

 1
m

m∑
i=1

1{Z∗i ≤y} −
1
n

N∑
i=m+1

1{Z∗i ≤y}

 (10)

is the two-sample classical empirical process. Denote GN as the set of all permutations π of
{1, . . . , N}, with |GN | = N !. Given Z∗ = z, recompute Km,n,δ(z) for all permutations π ∈ GN

and denote by
K

(1)
m,n,δ(z) ≤ K

(2)
m,n,δ(z) ≤ · · · ≤ K

(N !)
m,n,δ(z) ,

8For a more thorough appraisal of the sharp null hypothesis in connection with the permutation tests, see
Rosenbaum (2002); Caughey et al. (2017).
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the ordered values of {Km,n,δ(zπ) : π ∈ GN}, where zπ denotes the action of π ∈ GN on z ∈ R.
Let k = N !− bN !αc and define

M+(z) =
∣∣∣{1 ≤ j ≤ N ! : K(j)

m,n,δ(z) > K
(k)
m,n,δ(z)}

∣∣∣
M0(z) =

∣∣∣{1 ≤ j ≤ N ! : K(j)
m,n,δ(z) = K

(k)
m,n,δ(z)}

∣∣∣ .
Using this notation, the permutation test is given by

φ(z) =


1 Km,n,δ(z) > K

(k)
m,n,δ(z)

a(z) Km,n,δ(z) = K
(k)
m,n,δ(z)

0 Km,n,δ(z) < K
(k)
m,n,δ(z)

, (11)

where
a(z) = N !α−M+(z)

M0(z) .

Observe that for every π ∈ GN , the joint distribution of (Z∗1 , . . . , Z∗N) is the same as
(Z∗π(1), . . . , Z

∗
π(N)) under the null hypothesis (2). This invariance property under the null hy-

pothesis, the so-called randomization hypothesis, guarantees the finite-sample validity of the
permutation test. More formally, the permutation test (11) for the sharp null hypothesis sat-
isfies

E[φ(z)] = α , for any α ∈ (0, 1)

under the null hypothesis (Theorem 15.2.1, Lehmann and Romano, 2005). In other words, the
true false-rejection probability of the permutation test is exactly equal to significance level α
under the sharp null when δ is known.

Remark 3. Consider the same construction of the permutation test but replacing Km,n,δ with

Ku
m,n,δ(Z∗) = sup

0≤t≤1
|υm,n(t, δ;Z∗)| , (12)

where υm,n(t, δ;Z∗) = Vm,n(F−1
0 (t), δ;Z∗). A remarkable feature of the permutation test is that

they are level α test tests for any test statistic, as long as the randomization hypothesis holds.
As a result, the finite-sample exactness of the permutation test under the sharp null still holds
if we consider (12) instead. �

Remark 4. Permutation inference requires recalculating the test statistic as π varies in GN .
It often is the case in practice that GN is too large (N !), which makes the calculation of the
permutation test computationally expensive. In such cases, we can restore to a stochastic
approximation without affecting the finite-sample validity of the test. Let Ĝ = {g1, . . . , gB}
where g1 is the identity permutation and g2, . . . , gB are i.i.d. uniform on GN . The test may
again be used by replacing GN with Ĝ, and this approximation can be made arbitrarily close
for B sufficiently large (Romano, 1989, Section 4). Consequently, we will focus solely on GN

while keeping in mind that in practice we will resort to Ĝ. �
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2.3 Challenges for a Permutation Test with estimated δ

What happens to the permutation test if we replace δ by the sample estimate δ̂? The permu-
tation test based on (4) differs from the classical case in several important ways. First, the
finite-sample results are compromised since we do not know δ and therefore the randomization
hypothesis does not hold when δ is replaced with estimated δ̂. Second, while the permutation
test in the classical case is also asymptotically valid—as we show in Theorems A.1 and A.2 in
Appendix A—this is not the case when δ is unknown and needs to be estimated. Intuitively,
the necessity of estimating δ introduces an additional component to the limit distribution of
Vm,n(·, δ̂;Z), which no longer is the simple Brownian bridge as in the classical case. Instead,
we now obtain a Gaussian process with covariance structure that depends on the particulars of
the data generating process.

To formalize the ongoing discussion, we introduce further notation. Denote G the F0-
Brownian bridge, and let S be a Gaussian process with mean zero and covariance structure

C(S(x),S(y)) = σ2
0f0(x)f0(y) ,

where σ2
0 = V(Y0,i) <∞. Consider the process B = G + S with covariance structure

C(G(x),S(y)) = f0(y)F0(x) (1− F0(x)) {E(Y0,i|Y0,i ≤ x)− E(Y0,i|Y0,i > x)} . (13)

The following theorem establishes the asymptotic behavior of the two-sample Kolmogorov–
Smirnov statistic. It is due to Theorem 4 of Ding et al. (2016) for a suitably scaled variation
of their test statistic, but we include here for completeness.

Theorem 1. Assume Y0,1, . . . , Y0,n are i.i.d. according to a probability distribution F0, and
independently Y1,1, . . . , Y1,m are i.i.d. according to a probability distribution F1. Consider testing
the hypothesis (2) for some unknown δ based on the test statistic (4). Under assumptions A.1–
A.2, Km,n,δ̂ converges weakly under the null hypothesis to

K1 ≡ sup
y
|B(y)| ,

where B is given by B = G + S, and whose marginal distributions are zero-mean normal with
covariance structure (13).

The preceding theorem illustrates what Koenker and Xiao (2002) dub as the Durbin problem—
the complexity arising from the estimated nuisance parameter, rendering the asymptotic null
distribution intractable. The practical consequence of this complexity is to make it difficult, if
not impossible, to obtain critical values.
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Remark 5. We now illustrate the effect of the estimated nuisance parameter on the limiting
distribution. As we show in the proof of Theorem 1 in the Appendix A (see also Lemma B.3),
the smoothness condition A. 2 allows us to expand Vm,n(y, δ̂;Z) around δ to obtain

Vm,n(y, δ̂;Z) = Vm,n(y, δ;Z∗)︸ ︷︷ ︸
d→G(y)

+
√
mn

N

{
f0(y)(δ̂ − δ)

}
︸ ︷︷ ︸

d→ S(y)

+ op(1) .

Observe that the first summand is the classical two-sample empirical process, whose weak limit
distribution is the Brownian bridge G (see Theorem A.1 in Appendix A). However, the asymp-
totically distribution-free property of the classical two-sample Kolmogorov–Smirnov statistic is
jeopardized due to the introduction of the drift S—we now obtain a more complicated Gaussian
process B whose covariance structure depends on the underlying data generating process. �

Before formally stating the asymptotic properties of the permutation test based on Ku
m,n,δ̂

,
it might be helpful to consider an alternative description of the permutation test. More specifi-
cally, the permutation test rejects the null hypothesis (2) if Ku

m,n,δ̂
(z) exceeds the 1−α quantile

of the permutation distribution:

R̂K(δ̂)
m,n (t) = 1

N !
∑
π∈GN

1{Ku
m,n,δ̂

(zπ(1),...,zπ(N))≤t} . (14)

The permutation distribution can be seen as the conditional distribution of Ku
m,n,δ̂

(Zπ) given
Z, where π is a random permutation uniformly distributed over GN . This is so because,
conditionally on Z, Ku

m,n,δ̂
(Zπ) is equally likely to be any of Ku

m,n,δ̂
(Zπ) among π ∈ GN .

Since Ku
m,n,δ̂

is not asymptotically pivotal as shown in Theorem 1, one can deduce that the
corresponding permutation test fails to control the Type 1 error even asymptotically. This is
an immediate consequence of the fact that the permutation distribution based on Ku

m,n,δ̂
, does

not behave like the true unconditional limiting distribution asymptotically, as shown in the
following theorem. Note that the null hypothesis is not assumed.

Theorem 2. Assume Y0,1, . . . , Y0,n are i.i.d. according to a probability distribution F0, and
independently Y1,1, . . . , Y1,m are i.i.d. according to a probability distribution F1. Consider
testing the hypothesis (2) for some δ based on the test statistic (6). If assumptions A.1–A.2
hold, then the permutation distribution (14) based on Ku

m,n,δ̂
(Z) is such that

sup
t

∣∣∣R̂K(δ̂)
m,n (t)− J0(t)

∣∣∣ p→ 0 ,

where J0(·) denotes the CDF of Ku
0 ≡ supt|U(t)|. Here U(·) is the uniform Brownian bridge on

[0, 1].
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This discrepancy between the permutation distribution and the true unconditional limiting
sampling distribution breaks the asymptotic validity of the permutation test for testing constant
the treatment effect—the limiting rejection probability tends to a value different than the
nominal level α. As a result, one may have underrejection or overrejection under H0, with the
latter being more problematic. We confirm this phenomenon in the simulation studies presented
in Section 5.

Remark 6. As a matter of fact, the permutation distribution based on Ku
m,n,δ̂

when δ is
estimates is asymptotically equivalent to the permutation distribution based on Ku

m,n,δ when δ is
known.9 Intuitively, this resemblance occurs because in both cases, the permutation distribution
is treating the observations as if they were i.i.d. �

3 Valid Permutation Test

Section 2.3 concludes that the introduction of the drift term S in B implies that the limit-
ing behavior of the statistic based on the empirical process (4) is no longer asymptotically
distribution-free. A direct consequence of this is that it invalidates permutation inference.
To address this issue, Khmaladze (1981) employs a Doob–Meyer decomposition of the uni-
form empirical process in order to restore the asymptotically distribution-free nature of the
Kolmogorov–Smirnov statistic in the one-sample case. This section extends Khmaladze’s result
to the two-sample case and presents the asymptotically valid permutation test based on the
martingale-transformed statistic.

3.1 Martingale Transformation

We briefly review relevant concepts from Khmaladze (1981) that will be important for our main
result. We begin by introducing further notation. Define the function g(s) = (g1(s), g2(s)) =
(s, f0(F−1

0 (s)))′ on [0, 1], and ġ(s) = (ġ1(s), ġ2(s)) so that ġ is the derivative of g. Therefore
ġ(s) = (1, ḟ0(F−1

0 (s))/f0(F−1
0 (s))). Function g previously defined is closely connected with the

score function. As a matter of fact, it can be shown that g is the integrated score function of
the model (see remarks after assumption A2 in Bai (2003) and Section 4 in Parker (2013)).

Let D[0, 1] be the space of càdlàg functions on [0, 1], and denote by ψg(h)(·) the compensator
of h, ψg : D[0, 1]→ D[0, 1] given by

ψg(h)(t) =
∫ t

0

[
ġ(s)′C(s)−1

∫ 1

s
ġ(r)dh(r)

]
ds ,

where C(s) =
∫ 1
s ġ(t)ġ(t)′dt. Arguing as in Parker (2013), we can think of ψg(h)(·) as the

functional equivalent of the fitted values in a linear regression, where the extended score ġ(s)
9See Theorems A.1–A.2 in Appendix for asymptotic results when δ is known.
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acts as the regressor, and C(s)−1 ∫ 1
s ġ(r)dh(r) as the OLS estimator. This is the insight behind

the numerical calculation of the compensator in Section 3.3.

Remark 7. Existence of C(s)−1 for all s < 1 follows by Assumption A.2 (see also Theorem
3.3, Khmaladze, 1981). To see why, observe that Assumption A.2 implies that (i) the functions
ġ1(s) and ġ2(s) belong to L2[0, 1], the equivalence class of square-integrable functions on [0, 1],
and (ii) the functions ġ1(s) and ġ2(s) are linearly independent in the neighborhood of s = 1.
As a result, ġ1 and ġ2 form an orthonormal system of functions in L2[0, 1], which ensures the
transformation of the uniform empirical process into an innovation martingale (see remarks
that follow after Theorem 3.2, Khmaladze, 1981). �

The Khmaladze transformation of the two-sample empirical process (7) is given by

υ̃m,n(t, δ̂;Z) = υm,n(t, δ̂;Z)−
∫ t

0

[
ġ(s)′C(s)−1

∫ 1

s
ġ(r)dυm,n(r, δ̂;Z)

]
ds

= υm,n(t, δ̂;Z)− ψg(υm,n(t, δ̂;Z)) . (15)

The two-sample martingale-transformed version of the two-sample Kolmogorov–Smirnov
statistics is

K̃m,n,δ̂(Z) = sup
0≤t≤1

∣∣∣υ̃m,n(t, δ̂;Z)
∣∣∣ . (16)

The martingale-transformed statistic (16) is asymptotically pivotal and this is the key input
for the asymptotic validity of the permutation test. The asymptotic behavior of the permutation
distribution is obtained in the next Section.

3.2 Main Results

We now turn to our main theoretical result—the permutation test based on the martingale-
transformed statistic behaves asymptotically like the true unconditional limiting sampling dis-
tribution. We break this result down into two pieces. First, we establish the limit behavior
of (16), and then we show the asymptotic behavior of the proposed permutation test.

The following theorem states the limit behavior of (16). It essentially follows from an exten-
sion of Khmaladze (1981) to the two-sample case, where we show that υ̃m,n(·, δ̂;Z) converges
weakly to a Brownian motion process M under the null hypothesis, effectively nullifying the
effect of the estimated nuisance parameter δ̂.

Theorem 3. Assume Y0,1, . . . , Y0,n are i.i.d. according to a probability distribution F0, and
independently Y1,1, . . . , Y1,m are i.i.d. according to a probability distribution F1. Consider
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testing the hypothesis (2) for some δ based on the test statistic (16). Under assumptions A.1–
A.2, K̃m,n,δ̂ converges weakly under the null hypothesis to

K2 ≡ sup
0≤t≤1

|M(t) |

with CDF denoted by J2(·). Here M is the standard Brownian motion given by M = U−ψg(U),
and U is the standard Brownian bridge on [0, 1].

To gain further intuition as to why this transformation works, observe that the mapping
ψg(h)(·) is a linear mapping with respect to h, and satisfies ψg(cg) = cg for a constant or random
variable c (Bai, 2003). These properties combined with Remark 5, allow us to write (15) as

υ̃m,n(t, δ̂;Z) = υm,n(t, δ̂;Z)− ψg(υm,n)(t, δ̂;Z)
= υm,n(t, δ;Z∗)︸ ︷︷ ︸

d→U(t)

−ψg(υm,n)(t, δ;Z∗)︸ ︷︷ ︸
d→ψg(U)(t)

+op(1) .

From here it is easy to see that we may express the martingale-transformed two-sample empirical
process as if δ were known, plus some term that is asymptotically negligible. This implies
that the limit distribution is asymptotically distribution-free (see the proof of Theorem 3 in
Appendix A for more details).

We seek the limiting behavior of R̂K̃(δ̂)
m,n —the permutation distribution (14) based on the

Khmaladze transformed statistic K̃m,n,δ̂—and its upper α-quantile, which we now denote r̂m,n,
where

r̂m,n(1− α) = inf{t : R̂K̃(δ̂)
m,n (t) ≥ 1− α} .

The following theorem shows that the proposed test is asymptotically valid, i.e., the permu-
tation distribution based on the martingale-transformed version of the two-sample Kolmogorov–
Smirnov statistic behaves like the true unconditional limiting distribution of K̃m,n,δ̂. Conse-
quently, the α-upper quantiles r̂m,n can be used as “critical values” for K̃m,n,δ̂. Note that the
null hypothesis is not assumed.

Theorem 4. Assume Y0,1, . . . , Y0,n are i.i.d. according to a probability distribution F0, and
independently Y1,1, . . . , Y1,m are i.i.d. according to a probability distribution F1. Consider
testing the hypothesis (2) for some δ based on the test statistic (16). Under assumptions A.1–
A.2, the permutation distribution (14) based on the Khmaladze transformed statistic K̃m,n,δ̂ is
such that

sup
0≤t≤1

∣∣∣R̂K̃(δ̂)
m,n (t)− J2(t)

∣∣∣ p→ 0 ,

where J2(·) is the CDF of K2 defined in Theorem 3. Let r(1−α) = inf{t : J2(t) ≥ 1−α}. Then

r̂m,n(1− α) p→ r(1− α) .

14



Thus the permutation distribution behaves asymptotically like the true unconditional lim-
iting distribution. The relevance of Theorem 4 is that it asymptotically justifies the use of the
proposed permutation test for testing the null hypothesis of constant treatment effects.

Remark 8. There is no loss in power in using permutation critical values. To see why, let
rm,n be the 1 − α quantile of the distribution of K̃m,n,δ̂. Typically the Kolmogorov–Smirnov
test rejects when K̃m,n,δ̂ > rm,n, where rm,n is nonrandom. We have that rm,n → r(1 − α) =
J−1

2 (1−α). Assume that K̃m,n,δ̂ weakly converges to some limit law J ′2(·) under some sequence
of alternatives that are contiguous to some distribution satisfying the null hypothesis. Then
the power of the test would tend to 1 − J ′2(J−1

2 (1 − α)). Thus, under the premises of the
preceding Theorems 3 and 4, we have that r̂m,n, obtained from the permutation distribution,
satisfies r̂m,n

p→ J−1
2 (1−α). The same result follows under a sequence of contiguous alternatives,

thus implying that the permutation test has the same limiting local power as the Kolmogorov–
Smirnov test which uses nonrandom critical values. �

Remark 9. From the construction of the permutation test in (11) based on K̃m,n,δ̂, we have

Pr
{
K̃m,n,δ̂ > r̂m,n

}
≤ E [φ(Z)] ≤ Pr

{
K̃m,n,δ̂ ≥ r̂m,n

}
.

Hence it follows that Theorem 4 implies E [φ(Z)] → α. See Lehmann and Romano (2005,
Section 15.2.2). �

In the next two subsections, we illustrate the mechanics behind the Khmaladze transforma-
tion, as well as the numerical calculation of it.

3.3 Khmaladze Transformation as a Continuous-time Detrending
Operation

To gain further insight as to how the transformation works, we follow Bai (2003) and Parker
(2013), and we consider (15) with t taking discrete values, replacing integral with sums. For
instance, suppose 0 = t0 < t1 < · · · < tq < tq+1 = 1 is a partition of the interval [0, 1] and that
t takes on values on t1, t2, ..., tq. Write (15) in differentiation form

dυ̃m,n(t, δ̂;Z) = dυm,n(t, δ̂;Z)− ġ(t)′C(t)−1
∫ 1

t
ġ(r)dυm,n(r, δ̂;Z)dt . (17)
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Define dti = ti+1 − ti, and let
yi = dυm,n(ti, δ̂;Z)
xi = ġ(ti)dti

C(ti) =
q+1∑
k=i

xkx
′
k

∫ 1

t
ġ(r)dυm,n(r, δ̂;Z) =

q+1∑
k=i

xkyk ,

then the right hand side of (17) can be interpreted as the recursive residuals:

yi − x′i

q+1∑
k=i

xkx
′
k

−1
q+1∑
k=i

xkyk = yi − x′iβ̂i , (18)

where β̂i is the OLS estimator based on the last q − i + 2 observations. The cumulative sum
(integration from [0, ti)) of the above expression gives rise to a Brownian motion process.

3.4 Numerical Computation of the Khmaladze Transformation

In order to facilitate the numerical calculation of our test, we develop the R package RATest
(Olivares and Sarmiento, 2017). For completeness, we now show how the RATest package
calculates the compensator, as well as the martingale-transformed version of the two-sample
Kolmogorov–Smirnov statistic in practice.

The computation of the compensator involves numerical integration. Therefore, we assume
the partition {ti}i is evenly spaced, with the accuracy of the method depending on the number
of points q. Stack yi and xi in the following manner

Xi =
√

1
q


ġ1(tq+1) ġ2(tq+1)
ġ1(tq) ġ2(tq)

... ...
ġ1(ti) ġ2(ti)

 , yi = √q


υm,n(tq+1, δ̂;Z) − υm,n(tq, δ̂;Z)
υm,n(tq, δ̂;Z) − υm,n(tq−1, δ̂;Z)

...
υm,n(ti, δ̂;Z) − υm,n(ti−1, δ̂;Z)

 ,

where ġ1(s) = 1 and ġ2(s) = ḟ0(F−1
0 (s))/f0(F−1

0 (s)). The OLS estimator based on the last
q − i+ 2 observations described on right hand side of (18) can be written as

β̂i = (X′iXi)−1 X′iyi ,

which implies that the Khmaladze transformation of the empirical process in (15) can be
obtained by numerically integrating from [0, ti), i.e.

υm,n(ti, δ̂;Z)− 1
q

i∑
j=1

x′jβ̂j ,
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and therefore the test statistic can be calculated as

max
1≤i≤1

∣∣∣∣∣∣υm,n(ti, δ̂;Z)− 1
q

i∑
j=1

x′jβ̂j

∣∣∣∣∣∣ .
Observe that the computation of the compensator relies on the true density and score

functions. Following Bai (2003) and Koenker and Xiao (2002), we assume that g2(s) and ġ2(s)
can be replaced by an estimators g2,n(s) and ġ2,n(s), respectively, such that

sup
0≤t≤1

|g2,n(t)− g2(t)| = op(1) and (19)

sup
0≤t≤1

|ġ2,n(t)− ġ2(t)| = op(1) . (20)

The conclusions of Theorems 3 and 4 follow if we replace g2(s) and ġ2(s) with the uniformly
consistent estimators g2,n(s) and ġ2,n(s) by the same arguments as used in the proof of Bai
(2003, Theorem 4).

Remark 10. The implementation in RATest estimates both functions using the univariate
adaptive kernel density estimation á la Silverman (e.g. Portnoy and Koenker, 1989; Koenker
and Xiao, 2002), which satisfies the uniform requirements in (19)–(20) (Portnoy and Koenker,
1989, Lemma 3.2). �

4 Within-group Treatment Effect Heterogeneity

One conventional approach to investigating the potential heterogeneity in the treatment effect
involves estimating average treatment effects for subgroups defined by observable covariates,
such as demographic or pre-intervention characteristics. The underlying modeling assump-
tion of this approach treats mean impacts constant within subgroups while allowing them to
vary across subgroups10. Then, one may characterize treatment effect heterogeneity by testing
whether the existing differences vary significantly across subgroups.

The martingale transformed permutation test proposed here can be implemented to test
whether there exists within-group treatment effect heterogeneity. In essence, we propose a
test method for jointly testing the null hypotheses that treatment effects are constant within
mutually exclusive subgroups while allowing them to be different across subgroups.

To formalize the ongoing discussion, let us introduce further notation. Throughout we
assume that the mutually exclusive subgroups are formed from observed covariates, and are

10Notwithstanding the simplicity of this approach, it has been shown that it fails to describe the heterogeneity
in the treatment effect in some empirical examples, where it performs poorly relatively to other methods such
as quantile treatment effects models. This point is well developed and documented in Bitler et al. (2017), where
they analyze the effects of the Connecticut’s Jobs First welfare reform on earnings.
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taken as given. Denote J the total number of such subgroups. Let F j
0 (·) and F j

1 (·) be the
CDFs of the observations in control and treatment groups for subgroup 1 ≤ j ≤ J . The null
hypothesis of interest is given by the joint hypothesis

H0 : F j
1 (y + δj) = F j

0 (y) , for all mutually exclusive j ∈ {1, . . . ,J } , for some δj .

This section treats the testing of H0 as a multiple testing problem in which every individual
hypothesis j ∈ {1, . . . ,J }, given by

H0,j : F j
1 (y + δj) = F j

0 (y) , for some δj , (21)

specifies whether the treatment effect is heterogeneous for a particular subgroup11. We reject
the null hypothesis H0 if any one of the null hypotheses for a subgroup j ∈ {1, . . . ,J } is
rejected.

In order to achieve control of the family-wise error rate (FWER), we propose a stepwise
multiple testing procedure based on the Westfall–Young algorithm (Westfall and Young, 1993).
Similar adjustments for multiple testing are also available, but we opt for the Westfall–Young
due to its asymptotic optimality properties (Meinshausen et al., 2011), and its ability to incor-
porate the dependence structure of the individual tests.12

If each individual test can be summarized by a p-value, the following min p algorithm yields
adjusted p-values that allow us to control the test’s FWER level (see Westfall and Young, 1993,
Chapter 2). Observed data for each mutually exclusive subgroup is given by

Zj =
(
Y1,j1 , . . . , Y1,jmj , Y0,j1 , . . . , Y0,jnj

)
, for all 1 ≤ j ≤ J ,

where every subgroup Zj, 1 ≤ j ≤ J has mj+nj elements such that ∑j nj = n and ∑jmj = m.
Denote p1, . . . , pJ the p-values of the J individual permutation tests for (21), and the ordered
p-values pr1 ≤ · · · ≤ prJ , with their respective associated hypotheses of the form (21) given
by H0,r1 , . . . , H0,rJ . Define Tj = {rj, rj+1 . . . , rJ } and let gb,j for 1 ≤ j ≤ J be a random
permutation of {1, . . . ,mj + nj}.

Algorithm 1 (Westfall–Young)

1. For each permutation b = 1, . . . , B < min1≤j≤J {(mj + nj)!}:

(i) Apply action gb,j to every subgroup Zj, 1 ≤ j ≤ J : (gb,1Z1, . . . , gb,JZJ ), with
corresponding p-values p(b)

j for 1 ≤ j ≤ J .
11Naively testing for treatment effect variation for each subgroup at level α may lead us to flawed inference

though. With such a procedure the probability of one or more false rejections rapidly increases with the
number of subgroups. To put it in other words, the probability of falsely claiming that the treatment effect is
heterogeneous for some subgroup may be greater than α.

12We include an alternative procedure based on Holm (1979). See Appendix D for more details.

18



(ii) Let
p̃(b)
r1 = min

j∈T1
p

(b)
j , p̃(b)

r2 = min
j∈T2

p
(b)
j , . . . , p̃(b)

rJ
= p(b)

rJ
.

2. Define

L1 = #{pr1 ≥ p̃(b)
r1 : 1 ≤ b ≤ B} , . . . , LJ = #{prJ ≥ p̃(b)

rJ
: 1 ≤ b ≤ B} .

3. The adjusted p-values are given by

p∗r1 = L1

B
, p∗r2 = max

{
p∗r1 ,
L2

B

}
, . . . , p∗rJ = max

{
p∗rJ−1

,
LJ
B

}
.

4. Each adjusted p-value p∗rj—with associated hypothesis H0,rj—is now compared with α, for
1 ≤ j ≤ J , i.e., if p∗rj ≥ α then we fail to reject, otherwise reject H0,rj .

We reject the null hypothesis H0 if any one of the null hypotheses for a subgroup j ∈
{1, . . . ,J } is rejected.

Remark 11. A noteworthy byproduct of the testing problem we describe in the joint null
hypothesis H0 is that we can also declare for which subgroups, if any, there is heterogeneity
in the treatment effect. This is an immediate consequence of the step-down procedure we
present since we can now determine which hypothesis H0,rj is rejected. Investigating which
subgroups respond differentially to the treatment effect might be of particular interest, e.g.
when deciding whether to scale the experiment up. �

Remark 12. One of the main drawbacks of the min p method is that it is computationally
intensive since the adjusted p-values arise from two levels of permutations—one from the per-
mutation test, and one from the adjustment method itself. For this matter, we also consider
two alternative procedures—the max T (Algorithm 2) and Holm (Algorithm 3) procedures—
which control the family-wise error rate without incurring in such computational cost. See
Appendix D for details. �

Remark 13. Multiple testing approaches to treatment effect heterogeneity are also addressed
in Lee and Shaikh (2014); List et al. (2016); Bitler et al. (2017). Our approach differs from
theirs in several important ways. First, the handling of an estimated nuisance parameter lies
at the center of our testing procedure. Neither Lee and Shaikh (2014) nor List et al. (2016)
conduct inference based on empirical processes with estimated nuisance parameters, and while
Bitler et al. (2017) mention that their method is valid in the presence of estimated nuisance
parameters, their theoretical arguments are fundamentally different than ours—their approach
is based on constructing what they call the “simulated-outcomes distribution.” Second, we
propose a stepwise multiple testing procedure based on the Westfall–Young adjustment. Lee and
Shaikh (2014) and List et al. (2016) exploit similar yet different stepwise procedures (Romano

19



and Wolf, 2005, 2010), and Bitler et al. (2017) adjustment is more conservative for they use
Bonferroni bounds. Lastly, our approach is based on the two-sample, martingale-transformed
empirical process. Lee and Shaikh (2014) and List et al. (2016) work with a statistic based on
the p-values that arise from an underlying “difference-in-means” statistic. Meanwhile, Bitler
et al. (2017) test for equality of distributions between their simulated outcomes and the actual
observed data. �

5 Monte Carlo Simulations

We present several Monte Carlo experiments to examine the finite sample performance of the
proposed test in comparison to other methods. We adhere to the design in Koenker and Xiao
(2002), which serves as the benchmark for the Monte Carlo experiments in Chernozhukov and
Fernández-Val (2005) and Ding et al. (2016). For 1 ≤ i ≤ N , potential outcomes in the
simulation study are generated according to the relationship

Yi(0) = εi, δi = δ + σδYi(0)
Yi(1) = δi + Yi(0) ,

where σδ denotes the different levels of heterogeneity, and σδ = 0 induces a constant treatment
effect. Effects that vary from person to person in this manner are broadly discussed in Rosen-
baum (2002), although it is worth mentioning the proposed test allows us to work under more
general forms of heterogeneity. In each of the following specifications εi, 1 ≤ i ≤ N are i.i.d.
according to one of the following probability distributions: standard normal, lognormal, Stu-
dent’s t distribution with 5 degrees of freedom, and N ∈ {13, 50, 80, 200, 800, 1000}. Rejection
probabilities are computed using 5000 replications across Monte Carlo Experiments.

In the simulation results presented in Tables 1 and 2, we compare the proposed permutation
test based on the martingale-transformed two-sample Kolmogorov–Smirnov statistic (denoted
mtPermTest), which we calculate using the R package RATest, and the following five alterna-
tive tests:

Classic KM: This is the permutation test based on the classical two-sample Kolmogorov–
Smirnov statistic of Section 2.2. Even though this is an infeasible test—we do not know
the true value of δ in practice—we present it here to serve as a benchmark of the ideal
scenario.
Naive KS: This is the permutation test based on the two-sample Kolmogorov–Smirnov
statistic of Section 2.3. We call it naive because it ignores the effect that the estimated
nuisance parameter has on the limiting distribution.
FRT CI: This test is the Fisher’s randomization test confidence interval method of Ding
et al. (2016). Their approach finds the maximum p-value over a (1 − γ)-level confidence
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interval for δ, CIγ
pγ = sup

δ′∈CIγ
p(δ′) + γ ,

where p(δ′) is obtained by performing the permutation test under the sharp null hypoth-
esis (1). Following their numerical study, we take γ = 0.01.
Subsampling: This test is proposed by Chernozhukov and Fernández-Val (2005). It is
based on subsampling the appropriately recentered empirical quantile regression process

sup
τ∈T ⊂[0,1]

∣∣∣δ̂(τ)− δ̂
∣∣∣ ,

where δ̂(τ) is an estimator of δ(τ) in (3) given by δ̂(τ) = F̂−1
1 (τ)− F̂−1

0 (τ), F̂−1 = inf{y :
F̂ (y) ≥ τ}, and F̂ is the empirical CDF. We use subsampling block size b = 20 + N1/4

(see Section 3.4 in Chernozhukov and Fernández-Val, 2005).
Bootstrap: This test is introduced by Linton et al. (2005, Section 6) and Chernozhukov
and Fernández-Val (2005). It is based on the full-sample bootstrap approximation of the
sampling distribution of the two-sample Kolmogorov–Smirnov statistic (4). Arguing as in
Ding et al. (2016), we recenter treatment and control groups, and sample with replacement
from the pooled vector of residuals.

Table 1 reports rejection probabilities under the null hypothesis of constant treatment ef-
fect (σδ = 0)13. As a benchmark, it also reports the rejection probabilities of the classical
Kolmogorov–Smirnov test, taking δ as given. As expected in the light of Section 2.2, we see
that this permutation test in the classical case has rejection probabilities under the null hy-
pothesis very close to the nominal level for all specifications and sample sizes we consider in
the numerical experiments. These conclusions, however, do not carry over into the naive case
when δ is unknown. When δ is unknown and therefore becomes a nuisance parameter, the
permutation test applied to the two-sample Kolmogorov–Smirnov statistic may under-reject
(e.g., normal and t distributions) or over-reject (e.g. lognormal distribution) under the null
hypothesis, which illustrates the complexity arising from the estimated nuisance parameter,
and the challenges for permutation inference in this scenario.

Our proposed test performs fairly well across specifications. Interestingly, even though the
density and score functions are estimated non-parametrically with considerably small sample
sizes, the rejection probabilities only exceed the nominal level once (5.9%), though it is fre-
quently much less than the nominal level (e.g. N = 13, or ε ∼ N (0, 1)).

FRT CI yields severely conservative rejection probabilities in all specifications considered
here, especially for small sample sizes (N ≤ 50). This feature seems to disappear as sample
sizes increase. Subsampling delivers rejection probabilities under the null hypothesis less than

13Simulation results using the true density and score functions are similar in magnitude and therefore not
shown in here, though available upon request.
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the nominal level in all specifications although it is hyper-conservative. Finally, the bootstrap
approach over-rejects severely for the symmetric normal and t distributions.14

Table 2 reports the rejection probabilities for several levels of heterogeneity σδ and δ = 1. In
here, we only consider our proposed test, the FRT CI, and subsampling, leaving the other tests
out due to their infeasibility (classical KS) or their inability to control rejection probabilities
under the null for some specifications (naive KS and Bootstrap). In virtually all specifications,
our proposed test has the highest rejection probabilities under the alternative hypothesis (σδ >
0). This difference in power is more pronounced in situations when sample sizes are relatively
small. FRT CI appears to be generally less powerful than our proposed test, though it delivers
much greater rejection rates than subsampling, which has the lowest rejection probability under
the alternative among the three methods considered here.

6 Empirical Application

We briefly revisit an experiment by Gneezy and List (2006), also considered in Goldman and
Kaplan (2018), on the effects of gift exchange on worker effort, the so-called gift exchange
hypothesis. The underlying assumption in this model is that there exists a positive relationship
between wages and worker effort levels. Under this hypothesis, equilibrium unemployment
arises as a result of workers putting more effort when paid above their opportunity cost, and
firms pay above market wages (Akerlof, 1982). To assess this hypothesis, the authors conducted
two field experiments.

In the first experiment, experimental subjects are required to computerize the holdings of a
library at an hourly wage of $12. Once the task is explained to every participant, individuals
in the treatment group are informed that they would be paid $20 rather than the $12 rate
originally advertised. Individuals in the control group only observe the $12 rate. In line with
the gift exchange model, individuals exhibited higher effort in the first period (first 90 min)—
on average workers in the treatment group logged 51.7 books, whereas an average of only 40.7
books were logged by workers in the control group, yielding a statistically significant difference
of almost 25 percent (see second column, first row in Table 3). The increased effort levels
between control and treatment groups, however, disappears in subsequent periods, where the
differences are not statistically significant.

In the second experiment, the participants were asked to engage in a door-to-door fund-
14For a comparison between the bootstrap and subsampling tests, see Linton et al. (2005). The authors note

that the bootstrap mimics the asymptotic null distribution in the least favorable case, which is a subset of the
boundary of the null where the marginal distribution functions are equal. However, the boundary is composite,
implying that tests based on the approximation of the least favorable case are not asymptotically similar on this
boundary. Subsampling, on the other hand, approximates the true sampling distribution under the composite
null hypothesis and thus these tests are asymptotically similar on the boundary, resulting in an asymptotically
more powerful test for some local alternatives.
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Table 1: Size of α = 0.05 tests H0 : Constant Treatment Effect (δ = 1).

Distributions
N Method Normal Lognormal t5

Classic KS 0.0494 0.0482 0.0522
N = 13 Naive KS 0.0000 0.0298 0.0002
n = 8 FRT CI 0.0000 0.0004 0.0000
m = 5 Subsampling 0.0004 0.0050 0.0016

Bootstrap 0.0742 0.0314 0.0658
mtPermTest 0.0000 0.0472 0.0118

Classic KS 0.0528 0.0506 0.0460
N = 50 Naive KS 0.0002 0.3116 0.0014
n = 30 FRT CI 0.0064 0.0222 0.0062
m = 20 Subsampling 0.0062 0.0108 0.0102

Bootstrap 0.0330 0.0480 0.0360
mtPermTest 0.0266 0.0354 0.0472

Classic KS 0.0452 0.0516 0.0510
N = 80 Naive KS 0.0000 0.3244 0.0016
n = 50 FRT CI 0.0122 0.0280 0.0148
m = 30 Subsampling 0.0206 0.0062 0.0066

Bootstrap 0.0818 0.0414 0.0894
mtPermTest 0.0236 0.0590 0.0354

Classic KS 0.0472 0.0548 0.0486
N = 200 Naive KS 0.0004 0.3912 0.0032
n = 120 FRT CI 0.0290 0.0334 0.0250
m = 80 Subsampling 0.0344 0.0062 0.0124

Bootstrap 0.0926 0.0622 0.0864
mtPermTest 0.0236 0.0354 0.0428

Classic KS 0.0511 0.0514 0.0518
N = 800 Naive KS 0.0000 0.4340 0.0045
n = 500 FRT CI 0.0398 0.0405 0.0350
m = 300 Subsampling 0.0480 0.0048 0.0125

Bootstrap 0.0908 0.0656 0.0865
mtPermTest 0.0288 0.0470 0.0438

Classic KS 0.0498 0.0498 0.0476
N = 1000 Naive KS 0.0004 0.4362 0.0045
n = 600 FRT CI 0.0348 0.0458 0.0555
m = 400 Subsampling 0.0452 0.0070 0.0104

Bootstrap 0.0920 0.0680 0.0824
mtPermTest 0.0292 0.0480 0.0474

Rejection probabilities for the six tests defined in the text, for three different data generating processes,
and four different sample sizes.
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Table 2: Power of α = 0.05 tests for several levels of heterogeneity σδ, and δ = 1

N Results for Khmaladze Results for FRT CI Results for Subsampling
n = m σδ = 0 σδ = 0.2 σδ = 0.5 σδ = 0 σδ = 0.2 σδ = 0.5 σδ = 0 σδ = 0.2 σδ = 0.5
Lognormal Outcomes
50 0.0118 0.0354 0.1084 0.0194 0.0508 0.0218 0.0120 0.0318 0.0108
100 0.0120 0.0900 0.2320 0.0272 0.0550 0.1526 0.0124 0.0178 0.0590
400 0.0511 0.2910 0.8520 0.0438 0.1880 0.6616 0.0060 0.0340 0.3136
800 0.0440 0.6105 0.9901 0.0332 0.3522 0.9382 0.0064 0.0806 0.7172

Rejection probabilities for the six tests defined in the text, for three different data generating processes,
and four different sample sizes..

raising drive. In the same spirit as the first experiment, the displayed hourly wage was $10,
but treatment units were informed that they would get a $20 wage instead. Analogously,
their empirical findings show that the individuals in the treatment group raised significantly
more money in the first 3-hour window (before lunch) than solicitors in the control group—an
average total collection of $33 ($11 per hour) in the treatment group, whereas in the control
group solicitors raised an average total of $19.2 ($6.4 per hour), yielding a statistically significant
mean difference of $13.80 total ($4.6 per hour), a difference of 70 per cent. This effect, however,
disappears in the second 3-hour window (after lunch), where the difference is not statistically
significant (see sixth column in Table 3).

In order to complement their findings, we test for heterogeneity in the responses in the
first period in both experiments as well as the consecutive time periods, both individually and
jointly, accounting for multiple hypothesis problem.

Table 3: Testing for Heterogeneity in the Treatment Effect of Gift Exchanges

Library Task Fundraising Task
Time Mean T − C Test unadjusted adjusted Mean T − C Test unadjusted adjusted
Period Difference Statistic p-value p-value Difference Statistic p-value p-value
1 10.96∗∗ 0.73 0.24 0.47 13.80∗∗ 0.76 0.88 0.84
2 4.38 0.73 0.28 0.47 1.17 1.09 0.085 0.27
3 0.46 0.66 0.98 0.67
4 0.73 0.68 0.92 0.63

This table reports treatment effect differences in effort levels as a result of a gift exchange in the two experiments
described in Gneezy and List (2006). The sample sizes of the library task for control and treatment groups are n = 10
and m = 9, respectively. Similarly, the samples for fund-raising task consisted of n = 10 individuals in the control
group, and m = 13 in the treatment group. Column 1 shows the different time periods for both experiments. In the
library task, each period corresponds to a 90-minute interval, whereas in the fund-raising task periods 1 and 2 reflect
three-hour periods (before/after lunch). Inference for the mean difference in columns 2 and 5 was carried out using
a one-tailed, right handed Wilcoxon (Mann–Whitney) nonparametric test.
Significance at p < 0.1 and p < 0.05 is denoted with ∗ and ∗∗, respectively.
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Table 3 shows the results from our test using the R package RATest. Columns 3 and 7
report the Khmaladze transformed test statistic (16), with corresponding p−values. The labels
“unadjusted” and “adjusted” represent whether the p−values account for multiple hypothesis
testing (adjusted) or not (unadjusted). The adjusted p-values were calculated using max T
Westfall–Young procedure (Algorithm 2) with B = 200. Stochastic approximations for the
computation of p−values were calculated using 999 permutations (see Remark 4).

Our empirical results show that for the first period of the library experiment, we do not
reject the null hypothesis that the treatment effect is constant (unadjusted p-val= 0.24/adjusted
p-val= 0.47). This conclusion is also reached in Goldman and Kaplan (2018), although their
analysis finds almost rejection in upper quantiles15. Furthermore, the same conclusion holds
when we look at the subsequent periods — we do not have enough evidence in favor of treatment
effect heterogeneity (adjusted p-values are p = 0.47, p = 0.67, and p = 0.63). The adjusted p-
values of the individual tests shed some light into the general problem of simultaneously testing
the constant treatment effect hypothesis for every period (subgroup). In particular, our test
does not reject the joint null hypothesis of constant treatment effect for the library task.

In like manner, our martingale-transformed permutation test does not reject the null hy-
pothesis that the treatment effect is constant in both the pre-lunch period of the fund-raising
experiment (adjusted p-val= 0.84), and the post-lunch period (adjusted p-val= 0.27). It is
worth mentioning that not accounting for the multiple testing may lead to flawed inference,
like we argue in Section 4. More specifically, if we naively apply the individual test to each pe-
riod in the fund-raising task, ignoring multiple testing, one would conclude that the treatment
(gift) had a heterogeneous effect at a 10% level in the second period (unadjusted p-value= 0.085
vs adjusted p-value= 0.27). Similar to the library task, our test does not reject the joint null
hypothesis of constant treatment effect when simultaneously testing across pre/post lunch pe-
riods.

Without additional information, it is hard to draw a definite conclusion on the heterogeneity
in the treatment effect and its channels, but our results can complement those of Gneezy and
List (2006) and Goldman and Kaplan (2018), as well as serving as a vehicle for a more systematic
future investigation of the gift exchange hypothesis.

7 Conclusions

This paper proposes a permutation test for heterogeneous treatment effects in the presence
of an estimated nuisance parameter. Our method is based on the martingale transformation
of the empirical process to render an asymptotically pivotal statistic, effectively killing the
effect associated with the estimation error on the limiting distribution of the statistic. We

15Even though Goldman and Kaplan (2018) are also testing for equality at each point in the distribution,
they cast this question as a multiple hypothesis testing of a continuum of single hypotheses for the CDFs.
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show that the permutation test based on the martingale-transformed statistic results in the
asymptotic rejection probability of α in general while retaining the exact control of the test
level when testing for the more restrictive sharp null. We carry out Monte Carlo experiments
to investigate the finite sample performance of the proposed test in comparison with other
candidate methods. Numerical evidence suggests that our method is comparable to alternative
methods, complementing these alternatives.

To account for the fact that the treatment effect may vary concerning observable charac-
teristics, we extend the new method to test whether there exists treatment effect heterogeneity
within subgroups defined by observable covariates. This boils down to jointly testing the null
hypotheses that treatment effects are constant within mutually exclusive subgroups while al-
lowing them to be different across subgroups. A byproduct of this extension is that we are also
able to determine for which groups, if any, there is a heterogeneous treatment effect. Lastly,
we introduce the RATest R package and apply the proposed method to an investigation of the
gift exchange hypothesis in two field experiments. We illustrate how to apply our proposed
test to determine whether the treatment effect is heterogeneous across and within time periods.
Similar to earlier studies, we find evidence in favor of a constant treatment effect as opposed
to compared results that do not adjust for multiple testing.
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Appendix

The classes F in all of the applications in this Appendix are collections of indicator functions
of lower rectangles in R. Thus, the empirical processes in this paper can be viewed as random
maps into `∞(F)—the space of all bounded functions on R equipped with the uniform norm—
and weak convergence is understood as convergence in distribution in `∞(F). We are going to
assume that the class F is pointwise measurable (Van der Vaart and Wellner, 1996, Example
2.3.4), ruling out measurability problems with regards suprema.

Throughout this appendix, if ξ is a random variable defined on a probability space (Ω,B, P ),
it is assumed that ξ1, . . . , ξN are coordinate projections on the product space (ΩN ,BN , PN),
and the expectations are computed for PN . If auxiliary variables, independent of the ξs,
are involved—as in Lemma B.1—we use a similar convention. In that case, the underlying
probability space is assumed to be of the form (ΩN ,BN , PN)× (Z, C, Q), with ξ1, . . . , ξN equal
to the coordinate projections on the first N coordinates and the additional variables depending
only on the N + 1st coordinate.

Symbols Op(1) and op(1) stand for being bounded in probability and convergence to zero
in probability, respectively. All vector are column vectors. We use b·c to denote the largest
smaller integer, and a∧ b = min{a, b}. We use p→ to denote convergence in probability, and d→
to denote convergence in distribution, respectively. For two random variables ξ and η, write
ξ

d= η if they have the same distribution. Finally, we list some of the symbols denoting stochastic
processes, functionals on them, and distribution functions that we will employ in the proofs.
Some of them were introduced in the main text though included here for the sake of exposition:

U Standard (uniform) Brownian bridge on [0, 1] .
G F0-Brownian bridge. F0-Brownian bridge is obtainable as U ◦ F0 .

G1 F1-Brownian bridge. F1-Brownian bridge is obtainable as U ◦ F1 .
∼
G For p ∈ (0, 1),

∼
G(·) =

√
1− pG1(·)−√pG(·) .

S Gaussian process with mean 0 and covariance structure C(S(x),S(y)) = σ2
0f0(x)f0(y) .

B Gaussian process defined by B = G + S . Similarly, B1 = G1 + S .
∼
B For p ∈ (0, 1),

∼
B(·) =

√
1− p B1(·)−√p B(·) .

M Standard Brownian motion given by M = U + ψg(U) .
K0 For y ∈ R, K0 = sup

y
|G(y)| .

Ku
0 For t ∈ [0, 1],Ku

0 = sup
t
|U(t)| . Its CDF is given by J0(·)

K1 For y ∈ R, K1 = sup
y
|B(y)| .

K2 For t ∈ [0, 1], K2 = sup
t
|M(t)| . Its CDF is given by J2(·)
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A Proof of the Main Results

In the next two theorems, the asymptotic behavior of the permutation test based on the classical
two-sample Kolmogorov–Smirnov statistic is obtained. First, we state the true unconditional
limiting distribution of Km,n,δ. Second, we show that the the permutation distribution based
on the classical two-sample Kolmogorov–Smirnov statistic asymptotically behaves like the true
unconditional limiting distribution. Note that the null hypothesis is not assumed in the second
theorem. In order to deduce this second result, we follow Hoeffding (1952) approach. See also
Lehmann and Romano (2005, Theorem 15.2.3) and Chung and Romano (2013, Lemma 5.1).

Theorem A. 1. Assume Y0,1, . . . , Y0,n are i.i.d. according to a probability distribution F0, and
independently Y1,1, . . . , Y1,m are i.i.d. according to a probability distribution F1. Consider
testing the hypothesis (2) for some known δ based on the test statistic (9). Under assumption
A.1, Km,n,δ converges weakly under the sharp null hypothesis to

K0 ≡ sup
y
|G(y)| .

Moreover, if the test statistic is replaced by (12) and assumptions A.1–A.2 hold, then Ku
m,n,δ(Z)

converges weakly under the sharp null hypothesis to

Ku
0 ≡ sup

0≤t≤1
|U(t)| .

Theorem A. 2. Assume Y0,1, . . . , Y0,n are i.i.d. according to a probability distribution F0, and
independently Y1,1, . . . , Y1,m are i.i.d. according to a probability distribution F1. Consider
testing the hypothesis (2) for some known δ based on the test statistic (12). If assumptions
A.1–A.2 hold, then the permutation distribution (14) based on Ku

m,n,δ(Z∗) is such that

sup
y

∣∣∣R̂K(δ)
m,n (y)− J0(y)

∣∣∣ p→ 0 ,

where J0(·) denotes the CDF of Ku
0 defined in Theorem A.1.

Remark A.1. The permutation distribution based on Ku
m,n,δ asymptotically behaves like the

true unconditional limiting distribution. Consequently, the permutation test for the sharp null
results in asymptotically valid inference, meaning that its limiting rejection probability under
the sharp null hypothesis equals the nominal level α. Intuitively, if we assume condition A. 2
the process υm,n(·, δ;Z∗) becomes the uniform empirical process, rendering the statistic Ku

m,n,δ

a pivotal quantity. This latter property is the key to establishing the asymptotic validity of the
permutation test based on Ku

m,n,δ. �
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A.1 Proof of Theorem A.1

We first prove Km,n,δ converges weakly under the sharp null hypothesis to K0. Note that the
maps z → ‖z‖ from `∞(F) into R are continuous with respect to the supremum norm. Thus
by virtue of the continuous mapping theorem, it suffices to show that Vm,n(·, δ;Z∗) converges
weakly in `∞(F) to G under the null hypothesis.

Consider the following derivation

Vm,n(y, δ;Z∗) =
√
mn

N

{
F̂1(y + δ)− F̂0(y)

}
=
√

1− pm V1,m(y)−√pm V0,n(y) ,

where we used that pm = m/N and the following definitions

V1,m(y) =
√
m
{
F̂1(y + δ)− F1(y + δ)

}
V0,n(y) =

√
n
{
F̂0(y)− F0(y)

}
.

It is known from classical results that the class F of lower rectangles is Donsker (Van der Vaart
and Wellner, 1996, Section 2.1). Then under our assumptions, V1,m and V0,n converge weakly
in `∞(F) to two Gaussian processes, G and G1, respectively (Van der Vaart, 2000, Theorem
19.3). Since V1,m and V0,n are uncorrelated and the joint marginals converge to multivariate
normal distributions, the sequence converges jointly to a vector of independent (tight) Brownian
bridges G and G1. Then, Vm,n weakly converges to

∼
G, where the limit variable

∼
G possesses the

same distribution as G under the null hypothesis. This concludes the proof of the first part of
the Theorem.

We next prove that υm,n(·, δ;Z∗) weakly converges to U(·). The proof follows closely the
proof of weak convergence of Vm,n, we therefore omit some details. Start by noting F−1

0 is well
defined by assumption A. 2, and write υm,n as follows

υm,n(t, δ;Z∗) = Vm,n(F−1
0 (t), δ;Z∗)

=
√
mn

N

{
F̂1(F−1

0 (t) + δ)− F̂0(F−1
0 (t))

}
=
√
mn

N

{
F̂1
(
F−1

0 (t) + δ
)
− t

}
−
√
mn

N

{
F̂0
(
F−1

0 (t)
)
− t

}
.

Under our assumptions and the independence of the empirical processes V1,m and V0,n, υm,n(·, δ;Z∗)
weakly converges to (1− p)U(·)− pU(·) = U(·) (Van der Vaart, 2000, Theorem 19.3). The con-
clusion follows by a direct application of the continuous mapping theorem.

A.2 Proof of Theorem A.2

Independent of the Z∗s, let (π(1), . . . , π(N)) and (π′(1), . . . , π′(N)) be two independent random
permutations of {1, . . . , N}. We will denote Z∗π = (Z∗π(1), . . . , Z

∗
π(N)); Z∗π′ is defined the same

way with π replaced by π′.
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We seek to show that (
Ku
m,n,δ(Z∗π), Ku

m,n,δ(Z∗π′)
) d→

(
Ku

0 , K
u′

0

)
, (A.1)

where Ku
0 and Ku′

0 are independent with common CDF J0(·). Then Hoeffding’s Condition
(Lehmann and Romano, 2005, Theorem 15.2.3) implies that

sup
t

∣∣∣R̂K(δ)
m,n (t)− J0(t)

∣∣∣ p→ 0 ,

completing the proof of the theorem. In the following, we prove (A.1) in two steps.
Step 1. Apply the coupling construction of Chung and Romano (2013). More specifically,
couple data Z∗ with an auxiliary sample of N i.i.d. observations Z̄ = (Z̄1, . . . , Z̄N) from the
mixture distribution with CDF P̄ = pF δ

1 + (1− p)F0, where p = limm→∞m/N and F δ
1 is given

by F δ
1 (y) = F1(y + δ). See Appendix C for a detailed exposition of the coupling construction.

Step 2. We now argue that the permutation distribution based on Z∗ should behave approxi-
mately like the behavior of the permutation distribution based on Z̄. In view of the arguments
in the proof of Lemma 5.1 in Chung and Romano (2013), it suffices to verify the following two
conditions (

Ku
m,n,δ(Z̄π), Ku

m,n,δ(Z̄π′)
) d→

(
Ku

0 , K
u′

0

)
(A.2)

Ku
m,n,δ(Z̄π,π0)−Ku

m,n,δ(Z∗π) p→ 0 , (A.3)

where the permutation π0 is properly defined in Appendix C. Lemma B.1 establishes (A.2),
where Ku

0 , Ku′
0 are independent with common CDF J0(·), whereas (A.3) is the content of

Lemma B.2.

A.3 Proof of Theorem 1

We start by proving that Vm,n(y, δ̂;Z) converges weakly in `∞(F) to a (tight) Gaussian process
B given by B = G+S with covariance structure as in (13). We break this claim into four steps.
Step 1. Given our assumptions, we show in Lemma B.3 that Vm,n(y, δ̂;Z) has the following
asymptotic representation

Vm,n(y, δ̂;Z) =
√

1− pmBm,1(y)−√pmBn,0(y) + op(1) ,

where the op(1) term holds uniformly over y ∈ R, pm = m/N , and

Bm,1(y) = 1√
m

m∑
i=1

{
1{Y1,i≤y+δ} − F1(y + δ) + f0(y)

(
Y1,i − E(Y1,i)

)}
(A.4)

Bn,0(y) = 1√
n

n∑
i=1

{
1{Y0,i≤y} − F0(y) + f0(y)

(
Y0,i − E(Y0,i)

)}
. (A.5)
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Step 2. The sequences (Bm,1(y1), . . . , Bm,1(yk)) and (Bm,0(y1), . . . , Bm,0(yk)) converge weakly
to the marginals (B1(y1), . . . ,B1(yk)) and (B(y1), . . . ,B(yk)), respectively, for all k ∈ N, and
y1, . . . , yk ∈ R. It suffices by the Cramér–Wold device (Lehmann and Romano, 2005, Theorem
11.2.3) to show that, for every y

Bm,1(y) d→ N (0, F0(y)[1− F0(y)] + f 2
0 (y)σ2 + 2F0(y)

{
E[Y0,i1{Y0,i≤y}]− E[Y0,i]F0(y)

}
)

under the null hypothesis. This follows from the Lindeberg–Lévy central limit theorem. Repeat
an analogous argument for Bn,0(y) to reach the desired convergence in distribution result.

Step 3. In order to show the process {Bn,0(y) : y ∈ R}, is asymptotically equicontinuous,
observe that

Bn,0(y) = 1√
n

n∑
i=1

(
1{Y0,i≤y} − F0(y)

)
+ f0(y)√

n

n∑
i=1

(
Y0,i − E(Y0,i)

)
.

The first term on the right converges weakly to a (tight) Gaussian process G by Theorem A. 1;
the second one is in `∞(F) if and only if ‖f0‖ <∞. This follows from Assumption A.2, which
implies that F1 and F0 are Lipschitz continuous, then supy|f0(y)| <∞. Then the second term
converges too. By Van der Vaart and Wellner (1996, Theorem 1.5.4), both terms in the sum
of the last display are asymptotically equicontinuous. Repeat an analogous argument for Bm,1
to conclude the proof of asymptotic equicontinuity.

Step 4. Combine the previous steps to conclude by Van der Vaart and Wellner (1996, Theorem
1.5.4) that the processes (A.4)–(A.5) converge weakly in `∞(F) to two (tight) processes B1(·)
and B(·), respectively, where the processes B1(·) and B(·) are independent. We have that
pm → p ∈ (0, 1) by Assumption A. 1. Then, under the null hypothesis the limit variable
∼
B =
√

1− pB1 −
√
pB possesses the same distribution as B.

Then, the conclusion of the Theorem follows by the regular continuous mapping theorem.

A.4 Proof of Theorem 2

Since δ is unknown, we cannot shift data by δ as in the proof of Theorem A.2. Let Ỹ1,i ≡
Y1,i − δ̂, 1 ≤ i ≤ m and write X = (X1, . . . , XN) = (Ỹ1,1, . . . , Ỹ1,m, Y0,1, . . . , Y0,n). In other
words, Ỹ1,i is the recentered version of Y1,i, where the shift is now given by δ̂. Independent
of data, let (π(1), . . . , π(N)) and (π′(1), . . . , π′(N)) be two independent random permutations
of {1, . . . , N}. We will denote Xπ = (Xπ(1), . . . , Xπ(N)); Xπ′ is defined the same way with π
replaced by π′.

In the same spirit as in (A.1), we seek to show that(
Ku
m,n,δ̂

(Xπ), Ku
m,n,δ̂

(Xπ′)
) d→

(
Ku

0 , K
u′

0

)
, (A.6)
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where Ku
0 and Ku′

0 are independent and with common CDF J0(·). If the convergence result in
(A.6) holds, then

sup
y

∣∣∣R̂K(δ̂)
m,n (y)− J0(y)

∣∣∣ p→ 0

by Hoeffding’s Condition (Lehmann and Romano, 2005, Theorem 15.2.3), finishing the proof of
the Theorem. Since the joint distribution of

(
Ku
m,n,δ̂

(Xπ), Ku
m,n,δ̂

(Xπ′)
)

is the joint distribution
of
(
supt

∣∣∣υm,n(t, δ̂;Xπ)
∣∣∣, supt

∣∣∣υm,n(t, δ̂;Xπ′)
∣∣∣), it suffices to investigate the asymptotic behavior

of (
Vm,n(·, δ̂;Xπ), Vm,n(·, δ̂;Xπ′)

)
,

where

Vm,n(y, δ̂;Xπ) =
√
mn

N

 1
m

m∑
i=1

1{Xπ(i)≤y} −
1
n

N∑
i=m+1

1{Xπ(i)≤y}

 .

To this end, we argue that (1) the process
(
Vm,n(·, δ̂;Xπ), Vm,n(·, δ̂;Xπ′)

)
converges weakly

to a tight process
(
GP̄ (·),G′

P̄
(·)
)

in `∞(F) × `∞(F), and (2) the process
(
GP̄ (·),G′

P̄
(·)
)

is a
vector of two independent P̄ -Brownian bridges. In what follows we break the proof of these
requirements in two steps.
Step 1 To show weak convergence, we need to verify marginal convergence and stochastic
equicontinuity (Van der Vaart and Wellner, 1996, Theorem 1.5.4). For marginal convergence it
suffices by the Cramér–Wold device (Lehmann and Romano, 2005, Theorem 11.2.3) to deter-
mine the joint limiting behavior of

(
Vm,n(y, δ̂;Xπ), Vm,n(y, δ̂;Xπ′)

)
=
√

n

mN

(
N∑
i=1

1{Xi≤y}Wi,
N∑
i=1

1{Xi≤y}W
′
i

)

for every y ∈ R, where Wi and W ′
i are defined as in Lemma B.1.

Observe that E(1{Xi≤y}Wi) = E(1{Xi≤y}W ′
i ) = 0 by independence between data and Wi, W ′

i .
Set S as the number of positive integers i ≤ m with Wi = 1, which follows a hypergeometric
distribution with E(S) = m2/N and V(S) = (mn/N)2/(N − 1). Then by the law of total
variance

V
(
Vm,n(y, δ̂;Xπ)

)
= E

[
V
(
Vm,n(y, δ̂;Xπ)|S

)]
+ V

[
E
(
Vm,n(y, δ̂;Xπ)|S

)]
. (A.7)
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Simple algebra gives

E
(
Vm,n(y, δ̂;Xπ)|S

)
=
√

n

mN

{
SN

n

[
E
(
1{Ỹ1,i≤y}

)
− E

(
1{Y0,i≤y}

)]
− m2

n

[
E
(
1{Ỹ1,i≤y}

)
− E

(
1{Y0,i≤y}

)]}
(A.8)

V
(
Vm,n(y, δ̂;Xπ)|S

)
= n

mN

{
S V

(
1{Ỹ1,i≤y}

)
+ (m− S)V

(
1{Y0,i≤y}

)
+ (m− S)

(
m

n

)2
V
(
1{Ỹ1,i≤y}

)
+ (n−m+ S)

(
m

n

)2
V
(
1{Y0,i≤y}

)}
+ o(1) (A.9)

Note that

E
(
1{Ỹ1,i≤y}

)
= F1(y + δ) + o(1)

V
(
1{Ỹ1,i≤y}

)
= F1(y + δ)(1− F1(y + δ)) + o(1) .

Plugging the above expressions into Eq. (A.8)–(A.9) gives

V
[
E
(
Vm,n(y, δ̂;Xπ)|S

)]
= n

mN

{
m2

N − 1
(
F1(y + δ)− F0(y)

)2
}

+ o(1)

E
[
V
(
Vm,n(y, δ̂;Xπ)|S

)]
= n

mN

{(
m2

N
+ m3

n2 −
m2

n2
m2

N

)
V
(
1{Y1,i≤y}

)
+
(
m− m2

N
+ m2

n2 (n−m) + m2

n2
m2

N

)
V
(
1{Y0,i≤y}

)}
+ o(1) .

With this in mind, we can conclude that (A.8) reduces to

V
(
Vm,n(y, δ̂;Xπ)

)
= m

N
F1(y + δ) (1− F1(y + δ)) + n

N
F0(y) (1− F0(y))

+
(

nm

N(N − 1)

)(
F1(y + δ)− F0(y)

)2
+ o(1) .

Lastly, observe

C
(
Vm,n(y, δ̂;Xπ), Vm,n(y, δ̂;Xπ′)

)
= n

mN

N∑
i=1

N∑
j=1

E
(
1{Xi≤y}1{Xj≤y}WiW

′
j

)
= 0 ,

by independence of Wi and W ′
i and the fact that E(Wi) = 0 for all i. If assumption A.1 holds,

then (
Vm,n(y, δ̂;Xπ), Vm,n(y, δ̂;Xπ′)

) d→N
(

0,
(
P̄ (y)(1− P̄ (y)) 0

0 P̄ (y)(1− P̄ (y))

))
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by the same arguments as used in the proof of Lemma B.1. This finishes the proof of marginal
convergence. Asymptotic equicontinuity of the process {Vm,n(y, δ̂;Xπ) : y ∈ R} follows by the
same arguments as used in the proof of (Præstgaard, 1995, Theorem 1), and thus leads to the
desired results in Step 1.
Step 2 We now prove that(

GP̄ (y1), . . . ,GP̄ (yk)
)
⊥⊥
(
G′P̄ (y1), . . . ,G′P̄ (yk)

)
for all k ∈ N, and y1, . . . , yk ∈ R. By Step 1 , we know that the joint marginals converge to a
multivariate normal distribution whose covariance matrix is block-diagonal, then independence
follows by zero correlation.

A.5 Proof of Theorem 3

We begin the proof by stating some facts which follow from the null hypothesis, appearing also
in the proof of Theorem 1, namely V(Y1,i) = V(Y0,i) = σ2 <∞. If we further assume condition
A.2, then f1(y+ δ) = f0(y) for all y under the null hypothesis. Lastly, recall ψg(h)(·) is a linear
mapping with respect to h, and ψg(cg) = cg for a constant or random variable c.

First note that the Khmaladze transformation based on υm,n(t, δ̂;Z) is

υ̃m,n(t, δ̂;Z) = υm,n(t, δ̂;Z)−
∫ t

0

[
ġ(s)′C(s)−1

∫ 1

s
ġ(r)dυm,n(r, δ̂;Z)

]
ds

= υm,n(t, δ̂;Z)− ψg (υm,n) (t, δ̂;Z) . (A.10)

If Assumption A.2 holds, then use Lemma B.3 and Remark 5 to see that

υm,n(t, δ̂;Z) = Vm,n(F−1
0 (t), δ̂;Z)

= Vm,n(F−1
0 (t), δ;Z∗) +

√
mn

N

{
f0
(
F−1

0 (t)
)

(δ̂ − δ)
}

+ op(1)

= υm,n(t, δ;Z∗) +
√
mn

N

{
f0
(
F−1

0 (t)
)

(δ̂ − δ)
}

+ op(1) , (A.11)

where the op(1) term holds uniformly over 0 ≤ t ≤ 1. Next, note that

ψg (υm,n) (t, δ̂;Z) = ψg(υm,n)(t, δ;Z∗) +
√
mn

N

{
f0
(
F−1

0 (t)
)

(δ̂ − δ)
}

+ op(1) (A.12)

by properties of map ψg. Plug (A.11)-(A.12) into (A.10) to obtain

υ̃m,n(t, δ̂;Z) = υm,n(t, δ;Z∗)− ψg (υm,n) (t, δ;Z∗) + op(1) . (A.13)
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It follows from Theorem A.1 that υm,n(·, δ;Z∗) converges weakly to U. Further, we note
that the linear operator ψg is a Fredholm operator (Koenker and Xiao, 2002) on a Banach
space, hence a bounded operator. But an operator between normed spaces is bounded if and
only if it is a continuous operator (Abramovich and Aliprantis, 2002). Then ψg (υm,n) (·, δ;Z∗)
converges weakly to ψg(U) and thus υ̃m,n(·, δ̂;Z) converges weakly to M(·) (Khmaladze, 1981,
4.3).

Next apply the usual continuous mapping theorem to conclude that K̃m,n,δ̂ converges in
distribution to K2 under the null hypothesis, completing the proof of the theorem.

A.6 Proof of Theorem 4

We begin the proof by establishing the limiting behavior of R̂K̃(δ̂)
m,n . Recall from Section 3.2 that

υ̃m,n(t, δ̂;Z) = υm,n(t, δ;Z∗)− ψg(υm,n)(t, δ;Z∗) + op(1)
= υ̃m,n(t, δ;Z∗) + op(1) . (A.14)

We derive the limiting behavior of R̂K̃(δ̂)
m,n in three steps.

Step 1 We begin by determining the behavior of the permutation distribution based on
υ̃m,n(t, δ;Z∗). To this end, note that we have established the asymptotic behavior of the
permutation distribution based on υm,n(t, δ;Z∗) in Theorem A.2. Moreover, we know that
υ̃m,n(t, δ;Z∗) is a continuous mapping by the arguments in the proof of Theorem 3. Therefore,

sup
t

∣∣∣R̂K̃(δ)
m,n (t)− J2(t)

∣∣∣ p→ 0

by the continuous mapping theorem for randomization distributions, Chung and Romano
(2016a, Lemma A.6), thus finishing the proof of the claim.
Step 2 We now prove that (A.14) holds under permutations, i.e.,

υ̃m,n(t, δ̂;Zπ)− υ̃m,n(t, δ;Zπ) p→ 0 . (A.15)

In view of the contiguity result in Chung and Romano (2013, Lemma 5.3), we can deduce
(A.15) from the basic assumption of how it behaves under i.i.d. observations from the mixture
distribution P̄ . However, we know from Theorem A.2 and the Khmaladze transformation that
υ̃m,n(t, δ̂; Z̄π)− υ̃m,n(t, δ; Z̄π) p→ 0, where Z̄ = Z̄1, . . . , Z̄N is an i.i.d. sequence from the mixture
distribution, so the desired conclusion follows.
Step 3 Combine Steps 1 and 2 with the Slutsky’s Theorem for randomization distributions
(Chung and Romano, 2013, Theorem 5.2) to conclude

sup
t

∣∣∣R̂K̃(δ̂)
m,n (t)− J2(t)

∣∣∣ p→ 0 .
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For the second part, we note that the distribution of K2, i.e., the distribution of the norm
of a tight Brownian motion process, is strictly increasing and absolutely continuous with a
positive density (Beran and Millar, 1986, Proposition 2). Thus, under the conditions of the
Theorem,

r̂m,n(1− α) p→ r(1− α) = inf{t : J2(t) ≥ 1− α}
by Lehmann and Romano (2005, Lemma 11.2.1 (ii)), concluding the proof of the theorem.

B Auxiliary Lemmas

Throughout this appendix, if ξ is a random variable defined on a probability space (Ω,B, P ), it is
assumed that ξ1, . . . , ξN are coordinate projections on the product space (ΩN ,BN , PN), and the
expectations are computed for PN . If auxiliary variables, independent of the ξs, are involved—
as in Lemma B.1—we use a similar convention. In that case, the underlying probability space
is assumed to be of the form (ΩN ,BN , PN)× (Z, C, Q), with ξ1, . . . , ξN equal to the coordinate
projections on the first N coordinates and the additional variables depending only on the N+1st
coordinate. For example, the coordinate projections on the first N coordinates in Lemma B.1
have distribution function P̄ .

Lemma B.1. Let Z̄1, . . . , Z̄N be an i.i.d. sequence from the mixture distribution with CDF
P̄ = pF δ

1 + (1 − p)F0, with F δ
1 (y) = F1(y + δ). Independent of the Z̄s, let (π(1), . . . , π(N))

and (π′(1), . . . , π′(N)) be two independent random permutations of {1, . . . , N}. Set Z̄π =
(Z̄π(1), . . . , Z̄π(N)); Z̄π′ is defined the same way with π replaced by π′. If conditions A.1–A.2
hold, then (

Ku
m,n,δ(Z̄π), Ku

m,n,δ(Z̄π′)
) d→

(
Ku

0 , K
u′

0

)
,

where Ku
0 and Ku′

0 are independent with common CDF J0(·).

Proof. We can deduce the asymptotic behavior of Ku
m,n,δ(Z̄π) from the asymptotic behavior of

Km,n,δ(Z̄π) via the change of variable y 7→ P̄−1(t) and noting

υP̄m,n(t, δ; Z̄π) = Vm,n(P̄−1(t), δ; Z̄π)

=
√
mn

N

 1
m

m∑
i=1

1{Z̄π(i)≤P̄−1(t)} −
1
n

N∑
i=m+1

1{Z̄π(i)≤P̄−1(t)}


Ku
m,n,δ(Z̄π) = sup

t

∣∣∣υP̄m,n(t, δ; Z̄π)
∣∣∣ = sup

y

∣∣∣Vm,n(y, δ; Z̄π)
∣∣∣ = Km,n,δ(Z̄π) .

By the usual continuous-mapping argument, the desired conclusion follows if we can prove that
(1) the process

(
Vm,n(·, δ; Z̄π), Vm,n(·, δ; Z̄π′)

)
converges weakly to a tight process

(
GP̄ (·),G′

P̄
(·)
)
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in `∞(F) × `∞(F), and (2) the process
(
GP̄ (·),G′

P̄
(·)
)

is a vector of two independent P̄ -
Brownian bridges. In the following, we prove the requirements (1)–(2) in two steps.
Step 1 In order to show weak convergence, we need to establish marginal convergence con-
vergence and asymptotic equicontinuity (Van der Vaart and Wellner, 1996, Theorem 1.5.4).
Marginal convergence follows by verifying that the marginals

V(δ) =
(
Vm,n(y1, δ; Z̄π), . . . , Vm,n(yk, δ; Z̄π), Vm,n(y1, δ; Z̄π′), . . . , Vm,n(yk, δ; Z̄π′)

)
converge weakly to the marginals(

GP̄ (y1), . . . ,GP̄ (yk),G′P̄ (y1), . . . ,G′P̄ (yk)
)

for all k ∈ N, and y1, . . . , yk ∈ R. To this end, define

Wi =

 1 if π(i) ∈ {1, . . . ,m}
−m

n
if π(i) ∈ {m+ 1, . . . , N}

,

for 1 ≤ i ≤ N , and W ′
i is defined with π replaced by π′. Note that E(Wi) = E(W ′

i ) = 0, and
E(W 2

i ) = E(W ′ 2
i ) = m/n. With this in mind, rewrite V(δ) as

V(δ) = a1/2
m

(
N∑
i=1

1{Z̄i≤y1}Wi, . . . ,
N∑
i=1

1{Z̄i≤yk}Wi,
N∑
i=1

1{Z̄i≤y1}W
′
i , . . . ,

N∑
i=1

1{Z̄i≤yk}W
′
i

)ᵀ
,

where am = n/Nm. Observe that independence of π, π′ from Z̄ ensures that

E
(
1{Z̄i≤yj}Wi

)
= 0

V
(
1{Z̄i≤yj}Wi

)
= m

n
P̄ (yj)

(
1− P̄ (yj)

)
C
(
1{Z̄i≤yj}Wi,1{Z̄i≤yl}Wi

)
= m

n

(
P̄ (yj ∧ yl)− P̄ (yj)P̄ (yl)

)
E
(
1{Z̄i≤yj}1{Z̄i≤yl}WiW

′
i

)
= 0 ,

for 1 ≤ i ≤ N , 1 ≤ j ≤ k, 1 ≤ l ≤ k , and k ∈ N. Same equalities follow if we replace Wi by
W ′
i . Combining these facts, it is easy to check that E(V(δ)) = 0, and block-diagonal covariance

matrix V(V(δ)) = diag{Σi | i = 1, 2}, with

Σi =


P̄ (y1)(1− P̄ (y1)) . . . P̄ (y1 ∧ yk)− P̄ (y1)P̄ (yk)

... . . . ...
P̄ (yk ∧ y1)− P̄ (yk)P̄ (y1) · · · P̄ (yk)(1− P̄ (yk))

 .
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We now claim the asymptotic normality of V(δ). Using the Cramér–Wold device (Lehmann
and Romano, 2005, Theorem 11.2.3), it suffices to show that for vector c ∈ R2k,

cᵀV(δ) d→ c1GP̄ (y1) + · · ·+ ckGP̄ (yk) + ck+1G′P̄ (y1) + · · ·+ c2kG′P̄ (yk) .

Write cᵀV(δ) as follows

a1/2
m

k∑
j=1

(
N∑
i=1

1{Z̄i≤yj} (cjWick+jW
′
i )
)
. (B.1)

Conditionally on Wi and W ′
i , (B.1) is an independent sum of linear combinations of independent

random variables. For every summand j above, we can show that

a−1/2
m

(
maxi=1,...,N (cjWick+jW

′
i )∑N

i=1 (cjWick+jW ′
i )

2

)
p→ 0, as m,n→∞

by the arguments in the proof of Lehmann and Romano (2005, Theorem 15.2.5). Apply this
to every summand to conclude

cᵀV(δ) d→
k∑
j=1

(
cjGP̄ (yj) + ck+jGP̄ (yj)

)
.

This finishes the proof of marginal convergence. For convergence in `∞(F)× `∞(F), it suffices
to check asymptotic equicontinuity of the process {Vm,n(y, δ; Z̄π) : y ∈ R}. The proof follows
by the same arguments as used in the proof of Van der Vaart and Wellner (1996, Theorem
3.7.1) and omitted.
Step 2 We now prove that(

GP̄ (y1), . . . ,GP̄ (yk)
)
⊥⊥
(
G′P̄ (y1), . . . ,G′P̄ (yk)

)
for all k ∈ N, and y1, . . . , yk ∈ R. By Step 1 , we know that the joint marginals converge to a
multivariate normal distribution whose covariance matrix is block-diagonal. Then the sequence
converges to a vector of two independent P̄ -Brownian bridges with the same distribution.

Lemma B.2. Consider the setting described in Lemma B.1. If conditions A.1–A.2 hold, then

Ku
m,n,δ(Z̄π,π0)−Ku

m,n,δ(Z∗π) p→ 0 .
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Proof. To appreciate what is in the verification of the Theorem, we apply the coupling con-
struction in Appendix C, where π0 and D are properly defined. For notational convenience,
abbreviate Sm,n = Vm,n(y, δ; Z̄ππ0)− Vm,n(y, δ;Z∗π) for every y, and observe that

Sm,n =
√

n

mN

{
N∑
i=1

(
1{Z̄π0(i)≤y} − 1{Z∗i ≤y}

)
Wπ(i)

}
, (B.2)

where Wi is defined as in Lemma B.1. It is straightforward to see that E [Sm,n] = 0 by
independence of data and Wπ(i). To investigate the variance, observe that the elements in Z̄π0

and Z∗ are the same except for D of them. This makes all the terms in the difference Sm,n zero,
except for at most D of them. Conditioning on the random drawing of indices in the coupling
construction—hence conditioning on D and π0—and on the permutation π, the variance of Sm,n
is determined by

V [Sm,n] = E [V (Sm,n|D, π, π0)] + V [E (Sm,n|D, π, π0)] (B.3)

by the law of total variance. We claim that both terms in previous display are zero, asymptot-
ically. Note that the conditional variance in the first term in (B.3) is bounded above

V [Sm,n|D, π, π0] = n

Nm
DV

[
Wπ(i)

(
1{Z̄π0(i)≤y} − 1{Z∗i ≤y}

)∣∣∣D, π, π0
]
≤ n

m

D

N
O(1) .

In view of Chung and Romano (2013, Section 5.3), E(D/N) ≤ N−1/2 and so the first term on
the right hand side of (B.3) converges to 0. Another application of the law of total variances
applied to the second term in (B.3) yields

V [E (Sm,n|D, π, π0)] = E
{
V
[
E (Sm,n|D, π, π0)|D, π0

]}
+ V

{
E
[
E (Sm,n|D, π, π0)|D, π0

]}
.

Let S be the number of observations among those D observations that have Wπ(i) = 1. Condi-
tioning on the random drawing of indices in the coupling construction—hence conditioning on
D and π0—, the distribution of S is hypergeometric with D draws out of N elements, among
which m have Wπ(i) = 1. This gives

E[S|D, π0] = D
(
m

N

)
, and V[S|D, π0] = D

(
m

N

)(
n

N

)(
N −D
N − 1

)
.

With this in mind, it can be shown that

E
{
V
[
E (Sm,n|D, π, π0)|D, π0

]}
= 1
N − 1

[
E(D)− E(D2)

( 1
N

)]
O(1) = o(1)

V
{
E
[
E (Sm,n|D, π, π0)|D, π0

]}
= 0 .
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Then (B.2) converges to 0 in quadratic mean. Since both processes defining Sm,n are asymptot-
ically equicontinuous, the convergence in probability holds uniformly. This finishes the proof
of the lemma.

Lemma B.3. Assume Y0,1, . . . , Y0,n are i.i.d. according to a probability distribution F0, and
independently Y1,1, . . . , Y1,m are i.i.d. according to a probability distribution F1. If conditions
A.1–A.2 hold, then the process Vm,n(y, δ̂;Z) admits the following asymptotic representation

Vm,n(y, δ̂;Z) = Vm,n(y, δ;Z∗) +
√
mn

N

(
f1(y + δ)(δ̂ − δ)

)
+ op(1) ,

where the op(1) term holds uniformly over y ∈ R. Moreover, suppose that the null hypothesis
holds, then

Vm,n(y, δ̂;Z) =
√

1− pm
(

1√
m

m∑
i=1

{
1{Y1,i≤y+δ} − F1(y + δ) + f1(y + δ)

(
Y1,i − E(Y1,i)

)})

−√pm
(

1√
n

n∑
i=1

{
1{Y0,i≤y} − F0(y) + f1(y + δ)

(
Y0,i − E(Y0,i

)})
+ op(1) ,

where pm = m/N and the op(1) term holds uniformly over y ∈ R.

Proof. Simple algebra allows us to write Vm,n(y, δ̂;Z) as√
mn

N

{
F̂1(y + δ̂)− F̂0(y)

}
=
√
mn

N

{
F̂1(y + δ)− F̂0(y)

}
+
√
mn

N

{
F1(y + δ̂)− F1(y + δ)

}
+
√
mn

N

{(
F̂1(y + δ̂)− F1(y + δ̂)

)
−
(
F̂1(y + δ))− F1(y + δ)

)}
= Vm,n(y, δ;Z∗) +

√
mn

N

{
F1(y + δ̂)− F1(y + δ)

}
+ op(1) .

The last equality follows due to the fact that√
mn

N

{(
F̂1(y + δ̂)− F1(y + δ̂)

)
−
(
F̂1(y + δ))− F1(y + δ)

)}
= op(1)

by stochastic equicontinuity of
{√

m
(
F̂1(y)− F1(y)

)
: y ∈ R

}
and the arguments in Pollard

(Chapter VII.1 1984, pp. 139–140). In view of Condition A.2, we expand F1(y + δ̂) around δ
to obtain:

Vm,n(y, δ̂;Z) = Vm,n(y, δ;Z∗) +
√
mn

N

{(
F1(y + δ) + f1(y + δ)(δ̂ − δ)

)
− F1(y + δ)

}
+ op(1)

= Vm,n(y, δ;Z∗) +
√
mn

N

{
f1(y + δ)(δ̂ − δ)

}
+ op(1) .
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This finishes the first part of the proof. Suppose further that the null hypothesis holds. Then√
mn

N
(δ̂ − δ) =

√
mn

N

{
1
m

m∑
i=1

(
Y1,i − E(Y1,i)

)
− 1
n

n∑
i=1

(
Y0,i − E(Y0,i)

)}

=
√
n

N

{
1√
m

m∑
i=1

(
Y1,i − E(Y1,i)

)}
−
√
m

N

{
1√
n

n∑
i=1

(
Y0,i − E(Y0,i)

)}
,

and so

Vm,n(y, δ̂;Z) =
√
mn

N

{(
F̂1(y + δ)− F1(y + δ)

)
−
(
F̂0(y)− F0(y)

)}
+
√
mn

N

{
f1(y + δ)(δ̂ − δ)

}
+ op(1)

=
√

1− pm
{

1√
m

m∑
i=1

[
1{Y1,i≤y+δ} − F1(y + δ) + f1(y + δ)

(
Y1,i − E(Y1,i)

)]}

−√pm
{

1√
n

n∑
i=1

[
1{Y0,i≤y} − F0(y) + f1(y + δ)

(
Y0,i − E(Y0,i)

)]}
+ op(1) ,

as desired.

C Coupling Construction

The main idea behind the coupling argument in Chung and Romano (2013) is that the behavior
of the permutation distribution based on Z∗ should behave approximately like the permutation
distribution based on a sample of N i.i.d. observations Z̄ = (Z̄1, . . . , Z̄N) from the mixture
distribution P̄ = pF δ

1 + (1− p)F0, where F δ
1 (y) = F1(y + δ).

The basic intuition stems from the following. Since the permutation distribution considers
the empirical distribution of the statistic evaluated at all possible permutations of the data, it
clearly does not depend on the ordering of the observations.

The algorithm

Except for ordering, we can construct Z̄ to include almost the same set of observations as in
Z∗. First draw an index j from {0, 1} with probability P(j = 1) = p. Then, conditionally on
the outcome being j = 1, set Z̄1 = Y1,1 − δ. Next, draw another index i from {0, 1} at random
with probability P(i = 1) = p. If i = 0, then Z̄2 = Y0,1; otherwise if i = 1 as in the previous
step, then Z̄2 = Y1,2 − δ. Keep repeating this process, noting that there will probably be a
point in which you exhaust all the m observations governed by F δ

1 . If this happens and another
index j = 1 is drawn again, then just sample a new observation from F δ

1 , and analogously if the
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observations you have exhausted are from population with CDF F0. Continue this way so that
as many as possible of the original Z∗i observations are used in the construction of Z̄. After
this, you will end up with Z∗ and Z̄, with many of their coordinates in common—this is why
this method is called “coupling.” The number of observations in which Z∗ and Z̄ differ, say D,
is the (random) number of added observations required to fill up Z̄.

Remark C.1. Observe that the number of observations from F δ
1 in Z∗ is exactly m, whereas

the number of observations Z̄i out of N which are from population F δ
1 follows a Binomial (N, p)

distribution with mean pN , which is approximately m. Thus—except for the fact that the
ordering in Z∗ is such that the first m observations are coming from F δ

1 , and the last n are
coming from F0—the original sampling scheme is still only approximately like that of sampling
from P̄ = pF δ

1 + (1− p)F0. �

Reordering according to π0

We can reorder the observations in Z̄ by a permutation π0 so that Z∗i and Z̄π0(i) agree for all
i except for some hopefully small (random) number D. Recall that Z∗ has the observations
in order, that is, the first m observations arose from F δ

1 , while the last n observations are
distributed according to F0. Thus, to couple Z̄ with Z∗, put all observation in Z̄ that came
from F δ

1 in the first up to m. If the number of observations from F δ
1 is greater than or equal

to m (recall that this is a possibility), then Z̄π(i) for i = 1, . . . ,m are filled according to the
observations in Z̄ which came from F δ

1 , and if the number is greater, put them aside for now.
On the other hand, if the number of observations in Z̄ which came from F δ

1 is less than m, fill
up as many of Z̄ from F δ

1 as possible, and leave the rest of the blank spots for now.
Next, move onto the observations in Z̄ that came from F0 and repeat the above procedure

for m+ 1,m+ 2, . . . ,m+ n spots in order to complete the observations in Z̄π(i); simply fill up
the empty spots with the remaining observations which were put aside (at this point the order
does not matter, but chronological order is an option). This permutation of the observations
in Z̄ corresponds to a permutation π0 and satisfies Z∗i = Z̄π0(i) for indexes i, except for D of
them.

Why does coupling work?

The number of observations D where Z∗ and Z̄π0 differ is random and it can be shown that

E(D/N) ≤ N−1/2 .

Therefore, if the randomization distribution is based on the Kolmogorov–Smirnov statistic,
Km,n,δ(Z∗), such that the difference between Km,n,δ(Z∗) − Km,n,δ(Z̄π0) is small in some sense
whenever Z̄ and Z̄π0 mostly agree, then one should be able to deduce the behavior of the
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permutation distribution under samples from F0, F
δ
1 from the behavior of the permutation

distribution when all N observations come from the mixture distribution.
Suppose π and π′ are independent random permutations of {1, . . . , N}, and independent of

the Z∗i and Z̄i. Suppose we can show that(
Km,n,δ(Z̄π), Km,n,δ(Z̄π′)

) d→ (K0, K
′
0) , (C.1)

where K0 and K ′0 are independent with common CDF J1(·). Then by Chung and Romano
(2013, Theorem 5.1), the randomization distribution based on Km,n converges in probability
to J1(·) when all observations are i.i.d. according to probability distribution P̄ . But since ππ0
(meaning π composed with π0, so π0 is applied first) and π′π0 are also independent random
permutations, then it also implies that(

Km,n,δ(Z̄ππ0), Km,n,δ(Z̄π′π0)
) d→ (K0, K

′
0) .

Using the coupling construction above, suppose it can be shown that Km,n,δ(Z̄ππ0)−Km,n,δ(Z̄π)
converges to 0 in probability. Then it also follows that Km,n,δ(Z̄π′π0)−Km,n,δ(Z̄π′)

p→ 0. There-
fore, we can conclude that (Km,n,δ(Zπ), Km,n,δ(Zπ′)) d→ (K0, K

′
0) by Slutsky’s theorem. Another

application of Chung and Romano (2013, Theorem 5.1) allows us to conclude that the permuta-
tion distribution also converges in probability to J1(·) under the original model of two samples
from possibly different distributions.

D Multiple Testing Procedures

For completeness, we present the Westfall–Young max T , and the Holm’s step-down algorithms
as alternatives to the min P procedure for p-value multiple testing adjustment (see Westfall
and Young, 1993, Chapter 2). We note that the max T Algorithm is computationally faster
than the min P procedure since we do not need to calculate the p-values as in Algorithm 1,
whereas the computation gains in Holm’s procedure come from the fact we only have one level
of permutation (the one needed for the calculation of the p-values).

Denote p1, . . . , pJ the p-values of the J individual permutation tests for (21) based on the
martingale-transformed Kolmogorov–Smirnov statistic K̃m,n,δ̂, and the ordered values of the
statistics K̃r1 ≥ · · · ≥ K̃rJ . Define Tj = {rj, rj+1 . . . , rJ } and let gb,j for 1 ≤ j ≤ J be a
random permutation of {1, . . . ,mj + nj}.
Algorithm 2 (Westfall–Young’s max T)

1. For each permutation b = 1, . . . , B < min1≤j≤J {(mj + nj)!}:

(i) Apply action gb,j to every subgroup Zj, 1 ≤ j ≤ J : (gb,1Z1, . . . , gb,JZJ ), with
corresponding statistics K̃(b)

j for 1 ≤ j ≤ J .
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(ii) Let
K̂(b)
r1 = max

j∈T1
K̃

(b)
j , K̂(b)

r2 = max
j∈T2

K̃
(b)
j , . . . , K̂(b)

rJ
= K̃(b)

rJ
.

2. Define

H1 = #{K̃r1 ≤ K̂(b)
r1 : 1 ≤ b ≤ B} , . . . , HJ = #{K̃rJ ≤ K̂(b)

rJ
: 1 ≤ b ≤ B} .

3. The adjusted p-values are given by

p∗r1 = H1

B
, p∗r2 = max

{
p∗r1 ,
H2

B

}
, . . . , p∗rJ = max

{
p∗rJ−1

,
HJ
B

}
,

4. Each adjusted p-value p∗rj—with associated hypothesis H0,rj—is now compared with α, for
1 ≤ j ≤ J , i.e., if p∗rj ≥ α then we fail to reject, otherwise reject H0,rj .

Let pr1 ≤ · · · ≤ prJ be the ordered p-values, with their respective associated hypotheses
H0,r1 , . . . , H0,rJ . The following stepdown algorithm, due to Holm (1979), can be described as
follows:

Algorithm 3 (Holm)

1. If pr1 ≥ α/J , accept H0,r1 , . . . , H0,rJ and stop. If pr1 < α/J , reject H0,r1 and test the
remaining J − 1 hypotheses at level α/(J − 1).

2. If pr1 < α/J , but pr2 ≥ α/(J − 1), accept H0,r2 , . . . , H0,J and stop. If pr1 < α/J and
pr2 < α/(J − 1), reject H0,r2 and test the remaining J − 2 hypotheses at level α/(J − 2).

...

j. If pr1 < α/J , . . . , prj−1 < α/(J − j + 2), but prj ≥ α/(J − j + 1), accept H0,rj , . . . , H0,rJ
and stop. If pr1 < α/J , . . . , prj < α/(J −j+1), reject H0,rj and test the remaining J −j
hypotheses at level α/(J − j).

...

J . If prJ ≥ α, we fail to reject H0,rJ , otherwise reject H0,rJ .
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